
EE/CSE371, Spring 2025L15: Advanced Testing I

Design of Digital
Circuits and Systems
Testing: Assertions, OOP

Instructor: Vikram Iyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp

Adapted from material by Justin Hisa

EE/CSE371, Spring 2025L15: Advanced Testing I

Relevant Course Information

❖ Quiz 4 this Thursday @ 11:40 am

▪ Algorithms to Hardware

❖ Lab 5 report due Friday (5/23)

❖ Lab 6 proposal due next week (5/28)

▪ (1) Describe your major project behavior, features,
components/modules, and user interaction in a few
paragraphs

▪ (2) Include at least a top-level block diagram (preferably
with signals labeled on it; other diagrams welcome)

▪ (3) Include images/sketches of VGA output

▪ “Proposal Workshop” in lecture on 5/27
2

EE/CSE371, Spring 2025L15: Advanced Testing I

Testbenches

❖ HDL module that tests another module

▪ Typically called the device under test (dut) or unit under test
(uut)

▪ No ports (i.e., inputs or outputs)

▪ Not synthesizable

▪ Note: even if written in the same HDL, testbenches may give
different simulation results on different simulators

3

EE/CSE371, Spring 2025L15: Advanced Testing I

Test Vectors from a File

❖ Can be convenient to load test vectors from a file

▪ Use $readmemb and $readmemh

▪ Can also save you recompiling time!

4

logic [W-1:0] test_vectors[0:15];

 // define test inputs
 integer i;
 initial begin

 $readmemh("tests.txt", test_vectors);

 Reset = 1; Start = 0; @(posedge clk);
 Reset = 0; @(posedge clk);
 for (i = 0; i < 2**4; i++) begin

 Start = 1; Num = test_vectors[i]; @(posedge clk);

 Start = 0; @(posedge Ready);
 end
 @(posedge clk); // extra cycle of output
 $stop();

EE/CSE371, Spring 2025L15: Advanced Testing I

Dumping Responses

❖ The results of a simulation can be “dumped” to a file
for later viewing in a waveform viewer or analysis

▪ $dumpfile specifies the name of the file
• "dump.vcd" by default (Value Change Dump)

• Found in <Project>\simulation\modelsim

▪ $dumpvars saves all of the variables from that point
onward to that file
• You can use arguments to specify which variables you want

5

// define test inputs
integer i;
initial begin

 $dumpfile("values.vcd");
 $dumpvars;

 Reset = 1; Start = 0; @(posedge clk);
 Reset = 0; @(posedge clk);

EE/CSE371, Spring 2025L15: Advanced Testing I

EDA Playground

❖ The advanced verification features we will discuss
cannot be run in ModelSim so we will use EDA
Playground instead

▪ A web application that will let you use more powerful
commercial simulators

▪ Homework 6 will walk you through the registration process
and a short tutorial

▪ To use the waveform viewer in EDA playground, you must
generate a .vcd file during your simulation!

6

EE/CSE371, Spring 2025L15: Advanced Testing I

Checking Responses (Review)

❖ Visually checking simulated waveforms quickly
becomes impractical for large designs simulated over
thousands of clock cycles

▪ Even for isPrime, we are constantly scanning right for
Done, then scanning up and down for P.

▪ Displaying and explaining your waveforms for labs has been
tedious for a while now

❖ There are simulator-independent system tasks to
write messages to the user/tester!

▪ Look similar to printf() in C
• $<system_task>(<format_string>, <sig_1>, <sig_2>, …)

7

EE/CSE371, Spring 2025L15: Advanced Testing I

Format Specifiers (Review)

▪ Warning: these differ from the specifiers for printf

▪ The minimum field width is specified by numbers between
the ‘%’ and specifier letter
• e.g., %3d will pad out to 3 digits if necessary,

e.g., %0d will show just the minimum number of digits needed
8

EE/CSE371, Spring 2025L15: Advanced Testing I

Checking Responses: $display (Review)

❖ Triggers once when encountered, prints the given
format string and adds a new line:

9

// define test inputs
integer i;
initial begin
 Reset = 1; Start = 0; @(posedge clk);
 Reset = 0; @(posedge clk);
 for (i = 0; i < 2**W; i++) begin
 Start = 1; Num = i; @(posedge clk);
 Start = 0; @(posedge Ready);

 $display("T = %4t, isPrime(%2d) = %s",
 $time, Num, P ? "Yes" : "No
");

 end
 @(posedge clk); // extra cycle of output
 $stop();
end

EE/CSE371, Spring 2025L15: Advanced Testing I

Checking Responses: $write

❖ Triggers once when encountered, prints the given
format string without a new line:

 Same messages?

10

// define test inputs
integer i;
initial begin
 Reset = 1; Start = 0; @(posedge clk);
 Reset = 0; @(posedge clk);
 for (i = 0; i < 2**W; i++) begin
 Start = 1; Num = i; @(posedge clk);
 Start = 0; @(posedge Ready);

 $write("T = %4t, isPrime(%2d) = %s\n",
 $time, Num, P ? "Yes" : "No ");

 end
 @(posedge clk); // extra cycle of output
 $stop();
end

EE/CSE371, Spring 2025L15: Advanced Testing I

Checking Responses: $monitor

❖ Triggers when encountered, then triggers anytime
one of its signal changes (adds a new line):

 Same messages?

11

// define test inputs
integer i;
initial begin

 $monitor("T = %4t, isPrime(%2d) = %s\n",
 $time, Num, P ? "Yes" : "No ");

 Reset = 1; Start = 0; @(posedge clk);
 Reset = 0; @(posedge clk);
 for (i = 0; i < 2**W; i++) begin
 Start = 1; Num = i; @(posedge clk);
 Start = 0; @(posedge Ready);
 end
 @(posedge clk); // extra cycle of output
 $stop();
end

EE/CSE371, Spring 2025L15: Advanced Testing I

Lecture Outline

❖ Testbenches (yet again)

❖ Assertions

❖ Object-Oriented Programming

12

EE/CSE371, Spring 2025L15: Advanced Testing I

Assertion-Based Verification

❖ $display, $write, $monitor

▪ Can indicate the response of the circuit in textual form

▪ Still must be verified manually/visually, even if you also print
the expected response alongside it

❖ Assertions are SystemVerilog features that can print
messages when an expected condition fails

▪ assert – immediate assertion that follows simulation event
semantics

▪ assert property – concurrent assertion based on clock
semantics

13

EE/CSE371, Spring 2025L15: Advanced Testing I

Immediate Assertions

❖ An immediate assertion is an if-else statement with a
default-generated else:

▪ Must be contained inside of a procedural block

❖ Can also explicitly define pass and fail statements:

14

assert (P == 1); if (P == 1); // nothing if true
else $error("Assertion error.");

// defined pass, default fail
assert (P == 1) $display("%2d is prime", Num);

// default pass (nothing), defined fail
assert (P == 1) else $error("%2d is not prime", Num);

// defined pass, defined fail
assert (P == 1) $display("%2d is prime", Num);
else $error("%2d is not prime", Num);

EE/CSE371, Spring 2025L15: Advanced Testing I

Failure Messages

❖ Messaging: $info, $warning, $error

▪ Ordered in increasing severity (less severe are suppressible)

▪ Same argument format as $display, $monitor

▪ All print additional debugging line (time, scope, file, line),
but simulation continues

❖ Break: $fatal

▪ Takes an error_code as extra (1st) argument that is passed
to $finish, which terminates the simulation

▪ ModelSim produces this pop-up box:
• Click “No”, otherwise ModelSim will exit

15

EE/CSE371, Spring 2025L15: Advanced Testing I

Short Tech

Break
16

EE/CSE371, Spring 2025L15: Advanced Testing I

Concurrent Assertions

❖ Concurrent assertions run continuously throughout
simulation based on a sampling clock and can test for
much more complex behaviors

▪ Do not need to be placed inside another procedural block

▪ Assert that a specified property is true

▪ Like immediate assertions, can specify pass/fail code

▪ Unfortunately, these do not work in ModelSim

❖ Example: assert that Ready and Done are never true
at the same time

17

property ready_nand_done;
 @(posedge clk) ~(Ready & Done);
endproperty
assert property (ready_nand_done);

EE/CSE371, Spring 2025L15: Advanced Testing I

Properties

❖ Defined between property and endproperty

▪ Includes the ability to define an argument list!
• e.g.,

▪ Can be defined in-line, but this is stylistically discouraged

❖ Complex properties are typically active over (i.e., they
span) a period of time

▪ Specified using a combination of implications and sequences
• e.g.,

18

property handshake;
 @(posedge clk) Req |-> ##[1:2] Ack;
endproperty

property Nand(logic A, logic B);
 @(posedge clk) ~(A & B);
endproperty
assert property (Nand(Ready, Done));

EE/CSE371, Spring 2025L15: Advanced Testing I

Implications (Mathematics)

❖ 𝑝 ⇒ 𝑞 is read as “𝑝 implies 𝑞”

▪ A statement meaning: if 𝑝 is true, then 𝑞 must also be true

▪ The statement evaluates to true or false based on whether
the actual values of 𝑝 and 𝑞 support the implication:

• Logically equivalent to !𝑝 || 𝑞 or 𝑝 ? 𝑞 : 1

19

𝑝 𝑞 𝑝 ⇒ 𝑞

false false

false true

true false

true true

EE/CSE371, Spring 2025L15: Advanced Testing I

Implications (SystemVerilog)

❖ Implications are notated by A |-> C and A |=> C

▪ A is the antecedent (LHS), C is the consequent (RHS)

▪ The consequent is only evaluated if the antecedent is true

▪ In the context of assertions and properties, evaluating to
true is a pass and false is a fail

❖ Implication timing:

▪ An overlapped implication (|->) evaluates C in the same
clock cycle that A was true

▪ A non-overlapped implication (|=>) evaluates C on the next
clock cycle after A was true

❖ Practice: write an equivalent implication to ~(A&B)
20

EE/CSE371, Spring 2025L15: Advanced Testing I

Sequences

❖ A sequence is a series of Boolean expressions with
defined relationships in time

▪ Any Boolean expression is, by itself, an implicit sequence

▪ Sequences can be constructed from other sequences and
sequence operators

▪ You can name a sequence and give it arguments using
sequence and endsequence

❖ Common sequence operators:

▪ ##𝑁 – delays next sequence by 𝑁 cycles

▪ [*𝑁] – 𝑁 consecutive repetitions of the LHS

▪ [=𝑁] – 𝑁 non-consecutive repetitions of the LHS

▪ Any 𝑁 can be replaced by the inclusive range 𝐴:𝐵
21

EE/CSE371, Spring 2025L15: Advanced Testing I

Sequences

❖ Example: rewritten handshake property

22

sequence request;
 Req;
endsequence

sequence acknowledge;
 ##[1:2] Ack;
endsequence

property handshake;
 @(posedge clk) request |-> acknowledge;
endproperty

EE/CSE371, Spring 2025L15: Advanced Testing I

Assertion Example

❖ Modified vending machine specs:

▪ The machine only accepts dimes (D, 10¢) and nickels (N, 5¢)

▪ Once 20¢ has been inserted, a gumball is dispensed;
if more than 20¢ is inserted, all coins are returned

▪ The machine has two lights

• One to show that it is ready for the next transaction (Ready)

• One to show that further coins need to be inserted (Coin)

23

Vending
Machine

FSM

Gumball
Release

Mechanism

Coin
Sensor

N
DispenseD

CLK
Reset

Ready
Coin

Return

EE/CSE371, Spring 2025L15: Advanced Testing I

Vending Machine ASM Chart & State Table

24

State Next State

R
e

ad
y

D
is

p
en

se

R
e

tu
rn

C
o

in

𝐃 ഥ𝐃𝐍 ഥ𝐃ഥ𝐍

S_idle S_10c S_5c S_idle 1 0 0 0

S_5c S_15c S_10c S_5c 0 0 0 1

S_10c S_gum S_15c S_10c 0 0 0 1

S_15c S_ret S_gum S_15c 0 0 0 1

S_gum S_idle S_idle S_idle 0 1 0 0

S_ret S_idle S_idle S_idle 0 0 1 0

EE/CSE371, Spring 2025L15: Advanced Testing I

Testing the Vending Machine

❖ Dispense and Ready should never be asserted at
the same time

▪ Write an immediate assertion to double-check this fact in an
always block:

▪ Now write a concurrent assertion to double-check this fact
on each clock edge:

25

EE/CSE371, Spring 2025L15: Advanced Testing I

Testing the Vending Machine

❖ Write properties to double-check the following
expected behaviors:

▪ From the idle state, inserting a coin should cause the Coin
output to be asserted:

❖ Scope reminder:

▪ You may want to express an immediate assertion or
property using states (parameter, enum)

▪ Make sure that the assertion or property is inside the
appropriate module then (not the test bench)

26

EE/CSE371, Spring 2025L15: Advanced Testing I

Testing the Vending Machine

❖ Write properties to double-check the following
expected behaviors:

▪ In every clock cycle, exactly 1 of Ready, Coin, Dispense,
and Return should be asserted:

27

EE/CSE371, Spring 2025L15: Advanced Testing I

Aside: Default Clocking

❖ Instead of putting the clock edge in every property, it
is possible to define a default clocking block:

▪ Then you can omit the @(posedge clk) clause in
properties and assertions!

28

default clocking clock_block;
 @(posedge clk)
endclocking

EE/CSE371, Spring 2025L15: Advanced Testing I

Short Tech

Break
29

EE/CSE371, Spring 2025L15: Advanced Testing I

Lecture Outline

❖ Testbenches (yet again)

❖ Assertions

❖ Object-Oriented Programming

30

EE/CSE371, Spring 2025L15: Advanced Testing I

Object-Oriented Programming

❖ SystemVerilog allows for OOP

▪ Including inheritance and polymorphism

▪ For verification – not synthesizable (no good in ModelSim)

❖ Encapsulates the data together with the
code/routines that manipulates them

▪ Proper usage can yield gains in productivity, maintainability,
and thoroughness

❖ Facilitates testing – testbench’s goal is to apply stimuli
and then check to see if the result is correct

▪ We can model our testbenches as objects that perform a
sequence of actions: create a transaction, transmit it,
receive the result, check the result, report any issues

31

EE/CSE371, Spring 2025L15: Advanced Testing I

OOP Terminology

32

EE/CSE371, Spring 2025L15: Advanced Testing I

Defining a Class

❖ A class is defined between class and endclass

❖ Can be defined at the top-level or within a module or
package

▪ Typically define each class in a separate file, or can group
related classes in packages

33

class Transaction;

 bit [31:0] addr;

 function void display();
 $display("Transaction: %h", addr);
 endfunction

endclass

EE/CSE371, Spring 2025L15: Advanced Testing I

Aside: Packages

❖ A package creates an explicitly named scope that
contains declarations intended to be shared

▪ Can contain types, variables, tasks,
functions, sequences, properties,
classes, etc.

▪ Must be a top-level block

❖ Package components can be accessed directly via the
scope resolution operator (::) or imported

34

package pack;
 class Trans;
 // class body
 endclass
endpackage

module use_trans();
 initial begin
 pack::Trans tr;
 // test code
 end
endmodule

module use_trans();
 import pack::*;
 initial begin
 Trans tr;
 // test code
 end
endmodule

EE/CSE371, Spring 2025L15: Advanced Testing I

Constructing and Using Objects

❖ Create class handle, instantiate an object instance,
use dot notation to access properties and methods:

❖ Can define/override the class constructor:

35

module use_trans();
 initial begin
 // separate
 pack::Trans tr;
 tr = new();
 end
endmodule

module use_trans();
 initial begin
 // combined
 pack::Trans tr = new();
 tr.display();
 $write("%0d", tr.addr);
 end
endmodule

class Transaction;
 bit [31:0] addr;

 function new();
 addr = 371;
 endfunction

 // rest of class definition...

EE/CSE371, Spring 2025L15: Advanced Testing I

Classes Exercise

❖ A MemTrans class to generate transactions for
memory modules

❖ Create the class with the following:

▪ data_in property of logic type (8 bits)

▪ addr property of logic type (4 bits)

▪ write property of logic type (1 bit)

▪ void function that prints out the values of data_in and
addr in hex and write in binary

▪ A reasonable constructor

❖ Create a mem_test module that instantiates a
MemTrans object and invokes its function

36

EE/CSE371, Spring 2025L15: Advanced Testing I

Classes Exercise Sample Solution

class MemTrans;

 logic [7:0] data_in;

 logic [3:0] addr;

 logic write;

 function void print();

 $display("data_in = 0x%2h", data_in);

 $display("addr = 0x%h", addr);

 $display("write = %b", write);

 endfunction

 function new();

 {data_in, addr, write} = 13'd0;

 endfunction

endclass

37

module mem_test ();

 MemTrans tr;

 initial begin

 tr = new();

 tr.print();

 end

endmodule

EE/CSE371, Spring 2025L15: Advanced Testing I

Layered Testbenches

❖ Each block is an object
and passes transaction
objects

▪ Generator creates
transactions

▪ Driver talks to design

▪ Monitor receives response

▪ Scoreboard compares response to expectations

❖ Transactions can be transferred and held in FIFO
buffers for queuing

38

EE/CSE371, Spring 2025L15: Advanced Testing I

Looking Ahead

❖ Classes are required for SystemVerilog’s constrained
randomization features

❖ Randomized testing

▪ Difficult to completely test large designs

▪ Can be hard to anticipate all edge cases

▪ Want to find unexpected errors
• Designed tests only cover what you are anticipating

39

	Slide 1: Design of Digital Circuits and Systems Testing: Assertions, OOP
	Slide 2: Relevant Course Information
	Slide 3: Testbenches
	Slide 4: Test Vectors from a File
	Slide 5: Dumping Responses
	Slide 6: EDA Playground
	Slide 7: Checking Responses (Review)
	Slide 8: Format Specifiers (Review)
	Slide 9: Checking Responses: $display (Review)
	Slide 10: Checking Responses: $write
	Slide 11: Checking Responses: $monitor
	Slide 12: Lecture Outline
	Slide 13: Assertion-Based Verification
	Slide 14: Immediate Assertions
	Slide 15: Failure Messages
	Slide 16
	Slide 17: Concurrent Assertions
	Slide 18: Properties
	Slide 19: Implications (Mathematics)
	Slide 20: Implications (SystemVerilog)
	Slide 21: Sequences
	Slide 22: Sequences
	Slide 23: Assertion Example
	Slide 24: Vending Machine ASM Chart & State Table
	Slide 25: Testing the Vending Machine
	Slide 26: Testing the Vending Machine
	Slide 27: Testing the Vending Machine
	Slide 28: Aside: Default Clocking
	Slide 29
	Slide 30: Lecture Outline
	Slide 31: Object-Oriented Programming
	Slide 32: OOP Terminology
	Slide 33: Defining a Class
	Slide 34: Aside: Packages
	Slide 35: Constructing and Using Objects
	Slide 36: Classes Exercise
	Slide 37: Classes Exercise Sample Solution
	Slide 38: Layered Testbenches
	Slide 39: Looking Ahead

