W UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao Josh Wentzien
Selim Saridede Jared Yoder
Derek Thorp

Adapted from material by Justin Hisa

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Relevant Course Information

% Quiz 4 this Thursday @ 11:40 am

= Algorithms to Hardware

+» Lab 5 report due Friday (5/23)
» Lab 6 proposal due next week (5/28)

= (1) Describe your major project behavior, features,
components/modules, and user interaction in a few
paragraphs

® (2) Include at least a top-level block diagram (preferably
with signals labeled on it; other diagrams welcome)

= (3) Include images/sketches of VGA output
= “Proposal Workshop” in lecture on 5/27

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

Lecture Outline

+» Testbenches (yet again)
+» Assertions

+» Object-Oriented Programming

EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

EE/CSE371, Spring 2025

Testbenches

+» HDL module that tests another module

= Typically called the device under test (dut) or unit under test
(uut)

= No ports (i.e., inputs or outputs)
" Not synthesizable

= Note: even if written in the same HDL, testbenches may give
different simulation results on different simulators

Testbench

1L 1L 1L
Stimulus ::> Device Under 4'\ Verify

Verification j/ Responsg

Figure 8.1: Modular testbench structure.

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Test Vectors from a File

«» Can be convenient to load test vectors from a file
" Use Sreadmemb and Sreadmemh

" Can also save you recompiling time!

logic [W-1:0] test_vectors[0:15];

// define test inputs

integer 1;

initial begin
Sreadmemh ("tests.txt", test_vectors);
Reset = 1; Start = 0; @(posedge clk);

Reset = 0; @(posedge clk);
for (i = 0; 1 < 2%x4; 1i++) begin

Start = 1; Num = test_vectors[i]; @(posedge clk);

Start = 0; @(posedge Ready);
end
@(posedge clk); // extra cycle of output
Sstop () ; >

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Dumping Responses

% The results of a simulation can be “dumped” to a file
for later viewing in a waveform viewer or analysis

= Sdumpfile specifies the name of the file
« "dump.vcd" by default (Value Change Dump)

- Foundin <Project>\simulation\modelsim

= Sdumpvars saves all of the variables from that point
onward to that file
« You can use arguments to specify which variables you want

// define test inputs

integer 1;

initial begin
Sdumpfile("values.vcd");
Sdumpvars;

Reset
Reset

1; Start = 0; @(posedge clk);
0; @(posedge clk); 6

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

EDA Playground

«» The advanced verification features we will discuss
cannot be run in ModelSim so we will use EDA
Playground instead

= A web application that will let you use more powerful
commercial simulators

= Homework 6 will walk you through the registration process
and a short tutorial

%‘ To use the waveform viewer in EDA playground, you must
generate a . vcd file during your simulation! $ dumpwars;

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Checking Responses (Review)

+ Visually checking simulated waveforms quickly
becomes impractical for large designhs simulated over
thousands of clock cycles

" Even for isPr-ime, we are constantly scanning right for
Done, then scanning up and down for P.

= Displaying and explaining your waveforms for labs has been
tedious for a while now

+» There are simulator-independent system tasks to
write messages to the user/tester!

" Look similarto printf () ini(;/m

. S<system_task>(<format_string>, <sig_1>, <sig_2>, ..)

W UNIVERSITY of WASHINGTON

L15: Advanced Testing |

Format Specifiers (Review)

Table 5.7: Format Specifiers.

EE/CSE371, Spring 2025

N\ egcape chorecler
Table 5.8: Special characters.
Symbol | Meaning
\n New line
\t Tab
\\ \character
\” ” character
\Xyz Where xyz is are octal digits
- the character given by that octal code
%% % character

Specifier | Meaning

%h Hexadecimal format

%d Decimal format (signed)

%0 Octal format

%b Binary format

%oc ASCII character format

%V Net signalstrength

%m Hierarchical name of current scope
%S String

%ot Time

%€ Real in exponential format

%f Real in decimal format

% Real in exponential or decimal format

[

= Warning: these differ from the specifiers for printf

" The minimum field width is specified by numbers between

the ‘%" and specifier letter

- e.g., %3d will pad out to 3 digits if necessary,
%0d will show just the minimum number of digits needed

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Checking Responses: $display (Review)

L)

+~ Triggers once when encountered, prints the given
format string and adds a new line:

// define test inputs
integer 1; o :
. . . . ranscri
initial begin i
VSIM 4> run -all
Reset = 13 Start = 0; @(posedge clk); $T= 90, isPrime{ 0) = No
’ ’ ’
- B o # T = 150, isPrime({ 1) = HNo
Reset = G) @(posedge C-Lk)) $# T = 210, isPrime{ 2} = Yes
for (-i = @; 1 < 2**\,\[; -]++) beg-in $ T = 270, isPrime{ 3) = Yes
8 # T = 330, isPrime{ 4) = Ho
Start = 1; Num = i; @(posedge clk); # T = 410, isPrime{ 5) = Yes
— N . # T = 470, isPrime({ &) = HNo
Start = 0} @(posedge ReadY) ’ $ T = 570, isPrime(7) = Yes
T = €30, is3Prime{ 2) = Ho
9 " — o/ 0 e 0/ — oM # T = 710, is3Prime({ %) = HNo
Sdisplay("T = %4t, isPrime(%2d) = %s", ST 7 iepeime(l0) - Mo
Stime, Num, P ? "Yes" : "No # T = 910, isPrime(ll) = Yes
? ¢ # T = 870, isPrime(l2) = Ho
") $ T = 1130, isPrime{l3) = Yes
T = 1190, isPrime({l4) = No
end # T = 1270, isPrime(l5) = No
@(posedge clk); // extra cycle of output
$stop();
end

10

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Checking Responses: Swrite

L)

+~ Triggers once when encountered, prints the given
format string without a new line:

// define test inputs 5
: : Same messages:
integer 1;
initial begin p{ Transcrp -
VSIM 3> run -all
Reset = 1; Start = O; @(posedge C-l.k); $T= 90, isPrime{ 0) = No
— o o # T = 150, isPrime{ 1) = HNo
Reset = 0; @(posedge C-Lk) ’ $ T = 210, isPrime(2) = Yes
for (1 = 05 1 < 2%*W; i++) beg-in # T = 270, isPrime(3) = Yes
. # T = 330, isFPrime{ 4) = Hc
Start = 1; Num = 1; @(posedge Clk); # T = 410, isPrime(5) = Yes
_ . . $# T = 470, isPrime{ &) = HNo
Start = 0; @(posedge Ready); $T = 570, isPrime{ 7) = Yes
T = €30, isPrime{ 3) = Hc
3 n — 0/ g 9 0/ — 07 n # T = 710, isPrime{ &) = Ho
Swrite(T. %4t, isPrime(%2d) %s\n", ST o emeimeiin) -
Stime, Num, P ? "Yes" : "No "); # T = 910, isPrime(ll) = Yes
$ T = 970, isPrime(l2) = No
T = 1130, isPrime{l3) = Yes
end $ T =11%0, isPrime{l4) = Ho
T = 1270, isPrime(l5) = N
@(posedge clk); // extra cycle of output : reRmmelis) = e
$stop () ;
end

11

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Checking Responses: Smon-itor

+» Triggers when encountered, then triggers anytime
one of its signal changes (adds a new line):

// define test inputs 5
: : Same messages:
integer 1;
T . f 1 Transcript
R =g VSIM 6> run -all
. . . £ T = 0, izPrims{ x) = He
smonitor ("T = %4t, isPrime(%2d) = %s\n", #T= 30, isPrime(0) = He
. $T= 70, isPri 0y =N
$t-| me, Num, P ? "Yes" : "No ”) 5 & T = ;njr 1:P2§:E]_::: = NE
T = 150, isPrime{ 2) = No
_ . _ . . $T= 190, isPrime{ 2) = Y
Reset = 1; Start = 0; @(posedge clk); e ﬂm;;§${3?=;§
Reset = 0; @(posedge clk); sttt S e
. . . - = 0, isPrims = Ho
for (i = O; 1 < 2%xW; i++) beg'ln T = 330, isPrime{ 5) = No
_ . = . # T = 390, isPrime({ 5) = Yes
Start = 1; Num = i; @(posedge clk); $T = 410, isPrime(€) = Yes
= 0 . # T = 450, i3Prime(&) = Ho
dStart 03 @(posedge Ready); M s
en $# T = 550, iaPrime{ 7) = Yes
T = 570, i3Prime({ 3) = Yes
@(posedge clk); // extra cycle of output $T = 610, isPrime{ &) = Io
o $# T = &30, igPrime(9) = Hc
$St0p() 4 ¢ T = 710, isPrime(l0) = No
end k T = 770, isPrime{ll) = Ho
T = 890, isPrime({ll) = Yes
T = 810, isPrime({l2) = Yes
#T = 950, isPrime(l2) =No 4,
£ T = 970, isPrime(l3) = No

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

Lecture Outline

+» Testbenches (yet again)
+» Assertions

+» Object-Oriented Programming

EE/CSE371, Spring 2025

13

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

EE/CSE371, Spring 2025

Assertion-Based Verification

+ Sdisplay, Swrite, Smonitor
" Can indicate the response of the circuit in textual form

= Still must be verified manually/visually, even if you also print
the expected response alongside it

+~ Assertions are SystemVerilog features that can print
messages when an expected condition fails

" agssert —immediate assertion that follows simulation event
semantics

" assert property —concurrent assertion based on clock
semantics

14

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Immediate Assertions

«» An immediate assertion is an if-else statement with a
default-generated else:

assert (P == 1); | €=» |if (P == 1); // nothing if true
else Serror("Assertion error.");

"= Must be contained inside of a procedural block

+» Can also explicitly define pass and fail statements:

// defined pass, default fatil
assert (P == 1) Sdisplay("%2d is prime", Num);

// default pass (nothing), defined fatil
assert (P == 1) else Serror("%2d is not prime", Num);

// defined pass, defined fatil
assert (P == 1) Sdisplay("%2d is prime", Num);
else Serror("%2d is not prime'", Num);

15

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Failure Messages

+ Messaging: $info, Swarning, Serror
= Ordered in increasing severity (less severe are suppressible)
= Same argument format as $display, Smonitor

= All print additional debugging line (time, scope, file, line),
but simulation continues

+» Break: Sfatal

" Takes an error_code as extra (1%) argument that is passed
to STinish, which terminates the simulation

" ModelSim produces this pop-up box: | ™" vm

« Click “No”, otherwise ModelSim will exit @ < rousuresouvanttotinisne

16

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Short Tech
Break

17

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

EE/CSE371, Spring 2025

Concurrent Assertions

+» Concurrent assertions run continuously throughout

D)

simulation based on a sampling clock and can test for
much more complex behaviors

" Do not need to be placed inside another procedural block
= Assert that a specified property is true

= Like immediate assertions, can specify pass/fail code

" Unfortunately, these do not work in ModelSim

Example: assert that Ready and Done are never true

at the same time property ready_nand_done;

@(posedge clk) ~(Ready & Done);
endproperty
assert property (ready_nand_done);

18

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Properties

+~ Defined between property and endproperty

" |Includes the ability to define an argument list!

* €0. | property Nand(logic A, logic B);
@(posedge clk) ~(A & B);

endproperty

assert property (Nand(Ready, Done));

= Can be defined in-line, but this is stylistically discouraged

+» Complex properties are typically active over (i.e., they
span) a period of time
= Specified using a combination of implications and sequences

* €0 property handshake;
@(posedge clk) Req |-> ##[1:2] Ack;
endproperty

19

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Implications (Mathematics)

+ P = q isread as “p implies g”
= A statement meaning: if p is true, then g must also be true

" The statement evaluates to true or false based on whether
the actual values of p and g support the implication:

p q pP=q
false false
false true
true false
true true

- Logically equivalentto !'p || q or p?2q: 1

20

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Implications (SystemVerilog)

+ Implications are notated by A |-> Cand A |=>C
= Ais the antecedent (LHS), C is the consequent (RHS)
" The consequent is only evaluated if the antecedent is true

" |n the context of assertions and properties, evaluating to
true is a pass and false is a fail

+ Implication timing:
= An overlapped implication (| ->) evaluates C in the same
clock cycle that A was true

= A non-overlapped implication (| =>) evaluates C on the next

A B[NAND
clock cycle after A was true P ST
| O

[0l ¢
+ Practice: write an equivalent implication to ~ (A&Bo)
CV&]uﬁTPJ simul fﬂntﬂuuj{'ﬁ 50 bverlanml . Ml

21

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Sequences

+~ A sequence is a series of Boolean expressions with
defined relationships in time
= Any Boolean expression is, by itself, an implicit sequence

= Sequences can be constructed from other sequences and
sequence operators

"= You can name a sequence and give it arguments using
sequence and endsequence

N
+ Common sequence operators: Req b= #4 (1:2] Ak
= ##N — delays next sequence by N cycles Av> a3 B
= [*xN] — N consecutive repetitions of the LHS AR B3

= [=N] — N non-consecutive repetitions of the LHS A~> & C3)
= Any N can be replaced by the inclusive range A: B

22

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Sequences

+» Example: rewritten handshake property

sequence request;
Req;
endsequence

sequence acknowledge;
##[1:2] Ack;
endsequence

property handshake;
@(posedge clk) request |-> acknowledge;
endproperty

23

W UNIVERSITY of WASHINGTON

L15: Advanced Testing |

EE/CSE371, Spring 2025

Assertion Example

+» Modified vending machine specs:

" The machine only accepts dimes (D, 10¢) and nickels (N, 5¢)

" Once 20¢ has been inserted, a gumball is dispensed;
if more than 20¢ is inserted, all coins are returned

" The machine has two lights

- Oneto show that it is ready for the next transaction (Ready)
« One to show that further coins need to be inserted (Coin)

Ready
T Coin
BN Ry ol'T Gumball
Coin D en {ng Dispense umba
Sensor m MachineF—> Release
€«<—— FSM Mechanism

CLK -——————:r 1\

Reset
24

W UNIVERSITY of WASHINGTON

Vending Machine ASM Chart & State Table

L15: Advanced Testing |

B "S'ret |

|_D|spense| | Return B

S_idle
S 5c
S 10c
S 15c

S _gum

S ret

Next State

)] DN DN
S 10c S 5c S idle
S 15¢ S 10c S _5c
S gum S 15¢c S 10c
S ret S gum S _15c
S idle S_idle S idle
S idle S_idle S idle

EE/CSE371, Spring 2025

©O O o o o »
© = O o o o ENHJNHE
P O O O o o

O O Fr P P O e

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Testing the Vending Machine

+ Dispense and Ready should never be asserted at
the same time

= Write an immediate assertion to double-check this fact in an
always block:

= Now write a concurrent assertion to double-check this fact
on each clock edge:

26

W UNIVERSITY of WASHINGTON

L15: Advanced Testing |

EE/CSE371, Spring 2025

Testing the Vending Machine

+» Write properties to double-check the following
expected behaviors:

" From the idle state, inserting a coin should cause the Coin
output to be asserted:

+» Scope reminder:

"= You may want to express an immediate assertion or
property using states (parameter, enum)

= Make sure that the assertion or property is inside the
appropriate module then (not the test bench)

27

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Testing the Vending Machine

+» Write properties to double-check the following
expected behaviors:

" |n every clock cycle, exactly 1 of Ready, Coin, Dispense,
and Return should be asserted:

28

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Aside: Default Clocking

+ Instead of putting the clock edge in every property, it
is possible to define a default clocking block:

default clocking clock_block;
@(posedge clk)
endclocking

®= Then you can omit the @ (posedge clk) clausein
properties and assertions!

29

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Short Tech
Break

30

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

Lecture Outline

+» Testbenches (yet again)
+» Assertions

+» Object-Oriented Programming

EE/CSE371, Spring 2025

31

L15: Advanced Testing | EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON

Object-Oriented Programming

+ SystemVerilog allows for OOP
" |Including inheritance and polymorphism

® For verification — not synthesizable (no good in ModelSim)
need & more

- Encapsulates the data together with the [fuly-fadure

. . simulotor
code/routines that manipulates them .
" Proper usage can yield gains in productivity, maintainability,
and thoroughness

4

+ Facilitates testing — testbench’s goal is to apply stimuli
and then check to see if the result is correct

" We can model our testbenches as objects that perform a
sequence of actions: create a transaction, transmit it,
receive the result, check the result, report any issues Y

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

OOP Terminology

Blueprint for a house A complete house House Address
o] / 123 Elm Street
,/ oy

SETERETY) B ' i
Stute of all the
Turn on/off switches Light switches

Properties

33

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Defining a Class

« A class is defined between class and endclass

class Transaction;

bit [31:0] addr;

function void display();
$display("Transaction: %h", addr);
endfunction

endclass

+» Can be defined at the top-level or within a modu'le or
package

= Typically define each class in a separate file, or can group
related classes in packages

34

W UNIVERSITY of WASHINGTON

Aside: Packages

L15: Advanced Testing |

contains declarations intended to be shared

= Can contain types, variables, tasks,
functions, sequences, properties,

classes, etc.

" Must be a top-level block

EE/CSE371, Spring 2025

+ A package creates an explicitly named scope that

package pack;
class Trans;

endclass
endpackage

// class body

scope resolution operator (: :) or imported

module use_trans();
initial begin
pack::Trans tr;
// test code
end
endmodule

+» Package components can be accessed directly via the

module use_trans();
import pack::*;
initial begin
Trans tr;
// test code
end
| endmodule

35

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Constructing and Using Objects

+ Create class handle, instantiate an object instance,
use dot notation to access properties and methods:

module use_trans(); module use_trans();
initial begin initial begin
// separate // combined
pack::Trans tr; pack::Trans tr = new();
tr = new(); tr.display();
end Swrite("%0d", tr.addr);
endmodule end
endmodule

+~ Can define/override the class constructor:

class Transaction;
bit [31:0] addr;

function new() ;
addr = 371;
endfunction

// rest of class definition... 36

W UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2025

Classes Exercise

+ A MemTrans class to generate transactions for
memory modules

+ Create the class with the following:
= data_in property of logic type (8 bits)
= addr property of logic type (4 bits)
= write property of logic type (1 bit)
= void function that prints out the values of data_1in and
addr in hex and write in binary

= A reasonable constructor

+» Create a mem_test module that instantiates a
MemTrans object and invokes its function

4

37

L15: Advanced Testing |

W UNIVERSITY of WASHINGTON

EE/CSE371, Spring 2025

Classes Exercise Sample Solution

class MemTrans;
logic [7:0] data_1in;
logic [3:0] addr;
logic write;

function void print();

$display("addr = 0x%h", addr);
$display ("write = %b", write);
endfunction

function new() ;
{data_in, addr, write} = 13'd0;
endfunction
endclass

$display("data_in = 0x%2h", data_in);

module mem_test ();
MemTrans tr;
initial begin
tr = new();
tr.print();
end
endmodule

38

W UNIVERSITY of WASHINGTON

L15: Advanced Testing |

EE/CSE371, Spring 2025

Layered Testbenches

+» Each block is an object
and passes transaction
objects

® Generator creates
transactions

= Driver talks to design
= Monitor receives response

A Environment |
Generator
Y
Agent » Scoreboard [+— Checker
F 3
A 4
Driver Assertions Monitor
F 3
\ 4 A 4 v

DUT

= Scoreboard compares response to expectations

« Transactions can be transferred and held in FIFO

buffers for queuing

1

|
Ih
]

1
|

Functional Coverage

39

W UNIVERSITY of WASHINGTON L15: Advanced Testing |

EE/CSE371, Spring 2025

Looking Ahead

+ Classes are required for SystemVerilog’s constrained
randomization features

+» Randomized testing

= Difficult to completely test large designs
= Can be hard to anticipate all edge cases
= Want to find unexpected errors

- Designed tests only cover what you are anticipating

40

	Slide 1: Design of Digital Circuits and Systems Testing: Assertions, OOP
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline
	Slide 4: Testbenches
	Slide 5: Test Vectors from a File
	Slide 6: Dumping Responses
	Slide 7: EDA Playground
	Slide 8: Checking Responses (Review)
	Slide 9: Format Specifiers (Review)
	Slide 10: Checking Responses: $display (Review)
	Slide 11: Checking Responses: $write
	Slide 12: Checking Responses: $monitor
	Slide 13: Lecture Outline
	Slide 14: Assertion-Based Verification
	Slide 15: Immediate Assertions
	Slide 16: Failure Messages
	Slide 17
	Slide 18: Concurrent Assertions
	Slide 19: Properties
	Slide 20: Implications (Mathematics)
	Slide 21: Implications (SystemVerilog)
	Slide 22: Sequences
	Slide 23: Sequences
	Slide 24: Assertion Example
	Slide 25: Vending Machine ASM Chart & State Table
	Slide 26: Testing the Vending Machine
	Slide 27: Testing the Vending Machine
	Slide 28: Testing the Vending Machine
	Slide 29: Aside: Default Clocking
	Slide 30
	Slide 31: Lecture Outline
	Slide 32: Object-Oriented Programming
	Slide 33: OOP Terminology
	Slide 34: Defining a Class
	Slide 35: Aside: Packages
	Slide 36: Constructing and Using Objects
	Slide 37: Classes Exercise
	Slide 38: Classes Exercise Sample Solution
	Slide 39: Layered Testbenches
	Slide 40: Looking Ahead

