
EE/CSE371, Spring 2025L14:  Communication

Design of Digital 
Circuits and Systems
Communication

Instructor:  Vikram Iyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp 

Adapted from material by Justin Hisa



EE/CSE371, Spring 2025L14:  Communication

Relevant Course Information

❖ Homework 5 due tomorrow

❖ Lab 5 due next week (5/23)

▪ Hardest/longest lab

▪ You will need to use the VGA interface on LabsLand

❖ Quiz 4 next Thursday (5/22)

▪ Algorithm to Hardware – ASMD and datapath drawing

▪ 40 minutes

2



EE/CSE371, Spring 2025L14:  Communication

Disclaimers

❖ This topic (communication) won’t be used on any 
assignment this quarter

❖ It encompasses both FPGAs and computers and some 
analog considerations, but is definitely relevant to 
digital design

▪ Could test/build communication drivers on FPGAs, but often 
included in microcontrollers

▪ For more, take EE/CSE474: Embedded Systems

3



EE/CSE371, Spring 2025L14:  Communication

Communication

❖ “The transmission, reception, and processing of 
information between two or more locations with the 
use of electronic circuits.”

▪ Includes a lot more than what we’ve discussed so far

▪ Want this to be general so you don’t have to build custom 
circuits (like the CDC ones we saw) for every use

▪ However, many communication schemes are/were created 
for specific applications

❖ The goal for today is to introduce you to 
communication considerations via examples

4



EE/CSE371, Spring 2025L14:  Communication

Aside: LabsLand

❖ Made possible by communication between the DE1-
SoC, a Raspberry Pi Pico, and a Raspberry Pi Server:

5

Raspberry 
Pi Pico

Custom 
breakout 

board

Ethernet connections 
to Internet GPIO pins 

to Pico
(Lab 1, 6)

VGA
to Server

(Lab 5)

Audio to Server
(Lab 3)

Raspberry 
Pi Server



EE/CSE371, Spring 2025L14:  Communication

Communication Considerations

❖ Bandwidth:  number of wires and what mix of 
serial/parallel

❖ Speed:  bits/bytes/words per second

▪ Baud (Bd) is the unit for symbol changes per second

❖ Timing methodology:  synchronous or asynchronous

❖ Number of devices:  sources and destinations

▪ Arbitration scheme:  daisy-chain, centralized, distributed

❖ Protocols:  provide some guarantees as to 
correctness, may include error detection or correction

6



EE/CSE371, Spring 2025L14:  Communication

Serial vs. Parallel Communication

❖ Serial communication involves sending data over a 
single wire, separated in time

▪ Often includes other wires for control signals

❖ Parallel communication involves sending multiple 
bits of data simultaneously over multiple wires

❖ Discuss with your neighbor(s):

▪ Which type do you think is more prevalent in computer 
systems and why (pros/cons)?

7



EE/CSE371, Spring 2025L14:  Communication

Serial vs. Parallel Communication

❖ Serial is actually more common in modern systems!

▪ Fewer wires required → less costly, less power, less space, 
no clock skew

▪ High switching speeds leads to crosstalk in parallel data bits 
→ serial can do longer distances and higher transmission 
speeds (i.e., clock rate, not necessarily data rate)

▪ However, serial requires more processing to convert 
between serial and parallel form

❖ Parallel found within ICs and computer systems 
(system, memory, and hard drive busses) or 
specialized devices (e.g., older printer ports)

8

Parallel ATA Serial ATA



EE/CSE371, Spring 2025L14:  Communication

Timing Methodology

❖ Analogous to our clock domain crossing discussion

❖ Synchronous:  clock signal is sent along one of the 
communication wires

▪ Recall:  known relationship between clock signals

❖ Asynchronous:  clock signal is not sent

▪ Recall:  unknown relationship between clock signals

▪ Open-loop solutions typically involves oversampling by the 
receiver

▪ Closed-loop solutions include the various synchronizers 
previously discussed

9



EE/CSE371, Spring 2025L14:  Communication

Number of Devices

❖ Single source – single destination

▪ Easy and cheap (point-to-point, no tri-stating necessary)

❖ Single source – multiple destination

▪ Physical fanout limitations

▪ Need an addressing scheme to direct data to particular 
destination

❖ Multiple source – multiple destination

▪ With multiple potential drivers, need tri-stating as well as 
collision detection

▪ Fairness considerations (e.g., priority scheme, arbitration 
between senders)

10



EE/CSE371, Spring 2025L14:  Communication

Some Serial Communication Schemes

❖ UART

▪ Usually asynchronous, point-to-point

❖ SPI

▪ Synchronous, single source – single destination

❖ I2C

▪ Synchronous, single source – multiple destination

❖ USB

❖ Ethernet

▪ Multiple source – multiple destination

11



EE/CSE371, Spring 2025L14:  Communication

UART

❖ Universal Asynchronous Receiver-Transmitter

▪ Hardware device that implements this asynchronous serial 
communication interface (electrical details missing)

• UART is usually part of a microcontroller chip alongside an external 
driver circuit that converts the UART output to a specific standard 
(e.g., RS-232)

▪ Configurable serial frame:
• Transmission speed (e.g., 9600 baud)

• Data format:

12

start bit
(always low)

specified # of data bits
(8 shown here)

1-2 stop bits
(always high)

parity bit
(optional)



EE/CSE371, Spring 2025L14:  Communication

UART Details

❖ TX and RX signals, possibly used 
simultaneously

▪ Simplex, half duplex, full duplex

❖ Internal clock must run faster than baud rate

▪ Typically 8–16x 

▪ Data bits are sampled 
at expected “middle”

❖ Receiver and transmitter must have same settings to 
avoid errors

13



EE/CSE371, Spring 2025L14:  Communication

DE1-SoC UART Receiver Design

❖ Design notes:

▪ Data: input is serial, output is parallel (assume 8 bits/frame)

▪ DE1 running on CLOCK_50 but UART receiver must account 
for variable baud rate

▪ Want to sample in middle of data bit

❖ Design questions (datapath):

▪ What digital component will help us convert from serial to 
parallel?

▪ If the desired transmission rate is X Hz, which digital 
components can help us decide when to sample?

14



EE/CSE371, Spring 2025L14:  Communication

DE1-SoC UART Receiver Block Diagram

❖ Assume we are oversampling by 8x

❖ Inputs:  clk, reset, data_in

❖ Outputs:  data_out 

15

Clock Divider

en              out
    

      Up counter

8

clk_slow

s_in          out

    Shift register
 

    en

clk

3



EE/CSE371, Spring 2025L14:  Communication

❖ Assume 8 data bits, no parity bit, 1 stop bit

❖ Inputs:  reset, sampled_bit

❖ Outputs:  in_frame

DE1-SoC UART Receiver State Diagram

16

start bit
(always low)

specified # of data bits
(8 shown here)

1-2 stop bits
(always high)

parity bit
(optional)



EE/CSE371, Spring 2025L14:  Communication

Aside: LabsLand UART

❖ In Lab 6, you have the option of using two serial UART 
peripherals in LabsLand: N8 controller and joystick

▪ Uses provided serial_driver.sv on one of the GPIO pins 
to talk to the Pico

17



EE/CSE371, Spring 2025L14:  Communication

serial_driver.sv Notes

❖ SPEED is related to baud/transmission rate

▪ count/counter form the slow clock

▪ Constantly receiving data – arbitrary wait before next read

❖ MAX_STEPS accounts for serial frame configuration

▪ latch triggers request to Pico

▪ pulse, latch are used to sample/shift

▪ save is when save data (end of frame)

18

count 0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

latch 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pulse 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

save 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



EE/CSE371, Spring 2025L14:  Communication

Technology

Break
19



EE/CSE371, Spring 2025L14:  Communication

Communication Terminology Note

❖ The following communication schemes have 
historically used the term “master” to describe a 
device that controls one or more “slaves”

▪ This can be a problematic metaphor, particularly in the 
context of historical race relations in the United States

▪ It can also be an inaccurate metaphor, as often the “master” 
device does not actually have a real control relationship over 
the “slave” device(s) or they may be swappable

▪ More info: https://muse.jhu.edu/article/215390/ 

❖ Here, we will use proposed replacement names

▪ Not uniformly accepted – there is plenty of current debate 
around naming

20

https://muse.jhu.edu/article/215390/


EE/CSE371, Spring 2025L14:  Communication

SPI

❖ Serial Peripheral Interface

▪ A synchronous serial interface between one controller and 
one (of possibly many) peripherals

• Requires ≥ 4 wires (as opposed to UART’s 2)

• SCK = serial clock, PICO = peripheral in/controller out, 
POCI = peripheral out/controller in, CS = chip select (active low)

▪ Full duplex data transfer initiated by controller on a negative 
edge of the peripheral’s chip select

• Occurs one word (e.g., 8 bits) at a time, even if one party isn’t sending 
that much

21



EE/CSE371, Spring 2025L14:  Communication

SPI Details

❖ We don’t need to oversample values, but still want to 
read them in the middle

▪ Defined modes based on clock polarity (CPOL) and 
clock phase (CPHA)
• CPOL determines the “idling” 

state of the clock and  which
edges are considered leading
vs. trailing

• CPHA determines which edges
are for data changes and which
edges are for data capture

▪ This means that we can typically run SPI at a faster rate than 
UART!

22



EE/CSE371, Spring 2025L14:  Communication

Daisy Chain

▪ Single chip select line needed
▪ Whole chain acts as a 

communication shift register
▪ A less common configuration

Independent Selection

▪ Requires one chip select per 
peripheral

▪ Requires tri-stating
▪ Non-selected must ignore 

PICO and POCI signals

SPI Details

❖ Not great for communicating with multiple 
peripherals:

23



EE/CSE371, Spring 2025L14:  Communication

I2C/I2C

❖ Inter-Integrated Circuit Bus

▪ A synchronous serial interface between one controller and 
many targets

• Only requires 2 lines (same as UART), but bidirectional and half duplex

• SDA = serial data line, SCL = serial clock line

• Pull-up resistors create “open drain” bidirectional I/O:

▪ Can be used with many types of devices/targets
• e.g., µcontrollers, sensors, ADCs/DACs, memory 

modules, LCD drivers, real-time clocks

▪ Communications always initiated by controller, but both 
controller and target can send and receive data on SDA
• More difficult to manage (more on this next)

• Communications include acknowledgement

24



EE/CSE371, Spring 2025L14:  Communication

I2C/I2C Details

❖ Communications bookended by special (2-wire) 
START and STOP signals:

▪ While SCL is high:  START is SDA to low; STOP is SDA to high

▪ Other “START” signals are ignored until STOP is seen

❖ SDA values changed on leading edges of clock and 
read on trailing edges of clock (like SPI)

❖ Every N bits (usually 8) is followed by an ACK (0) or 
NACK (1) sent by the receiver

▪ Communications on SDA switches directions for this bit

25



EE/CSE371, Spring 2025L14:  Communication

I2C/I2C Details

❖ Everything is listening on the same SDA, so how to 
differentiate?

▪ First byte contains 7-bit address followed by R/W bit; 
targets with different addresses will ignore this 
communication
• 16 reserved addresses, so max of 112 targets

▪ Actually possible to have multiple controllers on the same 
SDA line, so need an arbitration scheme in case multiple 
controllers start a communication at the same time
• First controller to notice ground when trying to send a “1” stops

❖ Limited range because of bus capacitance and need 
for a common ground potential

26



EE/CSE371, Spring 2025L14:  Communication

Review Questions

❖ Which serial communication scheme(s):

▪ Has the most limited communication range?
 UART SPI I2C

▪ Is not fully duplex?

 UART SPI I2C

▪ Works best with multiple destinations?
 UART SPI I2C

▪ Can have the fastest transmission rate?

 UART SPI I2C

27



EE/CSE371, Spring 2025L14:  Communication

VGA

❖ Video Graphics Array

▪ Developed for cathode ray 
tube (CRT) displays, which scan 
across the monitor left-to-right and top-to-bottom
• Data sent sequentially pixel-by-pixel, but this is parallel 

communication because each pixel contains red, green, and blue 
(RGB) data simultaneously

• The electron guns need to reposition at the end of each row and 
frame

▪ Is a very confusing graphics standard, as it allows for 
different resolution, color, and timing specifications (with 
varying amounts of forgiveness on different monitors)

28

Extra slides: how does
VGA work



EE/CSE371, Spring 2025L14:  Communication

VGA Details

❖ The screen is not what you think!

▪ Up to 640 x 480 pixels in drawing area, but surrounded by 
front and back porches

• Pixel clock cycles through different pixel data during drawing area

▪ Horizontal and vertical sync signals pulse to trigger reset at 
end of row and frame, respectively

29



EE/CSE371, Spring 2025L14:  Communication

VGA Details

❖ The pinout is analog:

▪ Lines up mostly with the outputs of the VGA_framebuffer 
module:

30


	Slide 1: Design of Digital Circuits and Systems Communication
	Slide 2: Relevant Course Information
	Slide 3: Disclaimers
	Slide 4: Communication
	Slide 5: Aside: LabsLand
	Slide 6: Communication Considerations
	Slide 7: Serial vs. Parallel Communication
	Slide 8: Serial vs. Parallel Communication
	Slide 9: Timing Methodology
	Slide 10: Number of Devices
	Slide 11: Some Serial Communication Schemes
	Slide 12: UART
	Slide 13: UART Details
	Slide 14: DE1-SoC UART Receiver Design
	Slide 15: DE1-SoC UART Receiver Block Diagram
	Slide 16: DE1-SoC UART Receiver State Diagram
	Slide 17: Aside: LabsLand UART
	Slide 18: serial_driver.sv Notes
	Slide 19
	Slide 20: Communication Terminology Note
	Slide 21: SPI
	Slide 22: SPI Details
	Slide 23: SPI Details
	Slide 24: I2C/I2C
	Slide 25: I2C/I2C Details
	Slide 26: I2C/I2C Details
	Slide 27: Review Questions
	Slide 28: VGA
	Slide 29: VGA Details
	Slide 30: VGA Details

