
EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Design of Digital 
Circuits and Systems
Clock Domain Crossing

Instructor:  Vikram Iyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp 

Adapted from material by Justin Hisa



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Relevant Course Information

❖ Homework 5 due Friday (5/16)

▪ Problem 4 looks long but it’s more a walkthrough

❖ Lab 5 due next week (5/23)

▪ Hardest/longest lab
• Spend time planning and thinking through your design

▪ You will need to use the VGA interface on LabsLand

2



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Review: Timing Slack

❖ Slack is how much wiggle room we have before we 
run into a potential timing violation (setup or hold)

▪ Can think of as worst-case analysis

▪ Setup slack = DRTsu – DATsu = clock pathmin – data pathmax

▪ Hold slack = DATh – DRTh = data pathmin – clock pathmax

▪ We looked specifically at the slack between a single source 
and destination register, but in reality, we’d want to know 
the minimum slack between any two registers in our system

4



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Review: Timing Slack

❖ Solve for the min setup and hold slacks if T = 40 ns

▪ Registers:  𝑡ℎ = 1 ns, 𝑡𝑠𝑢 = 3 ns, 𝑡𝑐𝑜 ∈ 6,9  ns

▪ Delays:  𝑡wire ∈ 1,2  ns, 𝑡clk,A ∈ 1,2  ns, 𝑡clk,B ∈ 2,4  ns
Delays:  𝑡NOT ∈ 3,5  ns, 𝑡OR ∈ 6,8  ns, 𝑡XOR ∈ 9,12  ns

5

Constant

setup slack = clock pathmin – data pathmax

hold slack = data pathmin – clock pathmax



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Clock Domains

❖ A clock domain is all of the sequential logic that runs 
on the same clock/clock frequency

▪ May have multiple clock domains in one device or different 
clock domains when communicating across devices

▪ These can arise purposefully (e.g., using multiple clocks) or 
inadvertently (e.g., really bad clock skew and jitter)

6



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Clock Domain Crossing (CDC)

❖ Sending data from one clock domain to another is 
called a clock domain crossing

▪ Can cause timing issues: metastability, data loss, and data 
incoherence

▪ The sending clock domain and
receiving clock domain are
separated by a CDC boundary

❖ The phase and frequency relationships between clock 
domains may be known (synchronous CDC) or 
unknown (asynchronous CDC)

7



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Synchronization

❖ Synchronization: coordination of events for proper 
transfer of data

▪ e.g., the two-flip-flop circuit recommended in 271

▪ We will discuss a number of other synchronizers today

8



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Metastability

❖ Metastability is the ability of a digital system to 
persist for an unbounded time in an unstable 
equilibrium or metastable state

▪ Caused by timing constraint violations

▪ https://en.wikipedia.org/wiki/Metastability_in_electronics 

9

https://en.wikipedia.org/wiki/Metastability_in_electronics
https://en.wikipedia.org/wiki/Metastability_in_electronics


EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Metastability

❖ Why is metastability bad?

▪ Circuit may be unable to settle into a stable '0' or '1' logic 
level within the time required for proper circuit operation

• Unstable signals can also cause current spikes

▪ Unpredictable behavior or random value
• Metastable signal is passed to combinational logic

• Metastable signal passed to multiple destinations

• Downstream timing issues

10



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Metastability and CDC

❖ Metastability is inevitable in a multi-clock design, but 
want to prevent it as much as possible

▪ Caused by different frequencies, clock skew, clock jitter

❖ Signals in the sending clock domain should be 
synchronized before being passed to a CDC boundary

▪ Bad:

▪ Good:

11



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Metastability and CDC

❖ Metastability is inevitable in a multi-clock design, but 
want to prevent it as much as possible

▪ Caused by different frequencies, clock skew, clock jitter

❖ Signals in the receiving clock domain should be 
passed through a synchronizer before rest of system

▪ Add flip-flops to give metastable signals time to settle so 
rest of system receives clean/valid signals 

• For most synchronization applications, two flip-flops are sufficient

12



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Technology

Break
13



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Data Loss

❖ Data loss refers to information lost due to failures

❖ Data loss during CDC:

▪ Typically means incorrect reads or missed input changes

14



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Data Loss

❖ Data loss refers to information lost due to failures

❖ Data loss during CDC:

▪ Typically means incorrect reads or missed input changes

▪ Change in sending domain data may not be properly 
captured on first clock edge in receiving domain due to 
metastability:

15



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Dealing with Data Loss

❖ Sending domain data should be held constant long 
enough to be captured in the receiving domain

▪ No longer a cycle-by-cycle correspondence between sending 
and receiving domain data

❖ Need to account for differences in clock speeds

▪ Slower → Faster (synchronous):  holding input constant for 
one clock cycle is probably enough since Tsending > Treceiving

• Can do longer to be more sure

16



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Dealing with Data Loss

❖ Sending domain data should be held constant long 
enough to be captured in the receiving domain

▪ No longer a cycle-by-cycle correspondence between sending 
and receiving domain data

❖ Need to account for differences in clock speeds

▪ Faster → Slower (synchronous):  “open loop” solution is to 
holding input constant for longer by “stretching” them

17



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Dealing with Data Loss

❖ Sending domain data should be held constant long 
enough to be captured in the receiving domain

▪ No longer a cycle-by-cycle correspondence between sending 
and receiving domain data

❖ Need to account for differences in clock speeds

▪ Faster → Slower (synchronous):  “closed loop” solutions can  
check for proper receipt of signal before changing signal

18



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Dealing with Data Loss

❖ Sending domain data should be held constant long 
enough to be captured in the receiving domain

▪ No longer a cycle-by-cycle correspondence between sending 
and receiving domain data

❖ Need to account for differences in clock speeds

▪ For asynchronous CDC, will need to employ a more 
sophisticated synchronization technique
• e.g., handshake or FIFO buffer

19



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Data Incoherence

❖ Data incoherence is the invalid combination of values 
caused by differing outcomes when passing multiple 
signals (e.g., a vector) through a CDC simultaneously

▪ Depending on what the data represents, this invalid state 
may lead to functional errors

20



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Dealing with Data Incoherence

❖ Specifically trying to avoid invalid states

▪ The issue of incorrect reads is metastability and data loss

❖ When possible, restrict data changes to 1 bit at a time

▪ Even on failed transition, will remain in a valid state

▪ e.g., a Gray code counter

❖ Ensure that system can recover from invalid states

▪ May result in less optimized logic

▪ e.g., force transitions from invalid to valid states in FSM
21

Decimal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Gray 000 001 011 010 110 111 101 100



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Synchronization of CDC Data Signals

❖ The previously mentioned techniques of adding 
synchronizing flip-flops and using Gray codes are not 
generally sufficient for data buses through a CDC

❖ Three common methods for synchronizing data 
between clock domains are: 

▪ MUX-based synchronizers

▪ Handshake signals

▪ FIFO buffers

22



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Flip-Flop Synchronizer

❖ Add 𝑚 flip-flops in the receiving domain 

▪ Generally want to hold input data stable for 𝑚+1 receiving 
domain clock edges to ensure settling of data

23



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Recirculation MUX Synchronizer

❖ Control signals typically can sufficiently be handled by 
flip-flop synchronizers, so can use these to choose 
when to sample the data in the receiving domain

24



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Handshake Synchronizer

❖ A request-and-acknowledge scheme to guarantee the 
sampling of correct data

▪ The relationship of the two clocks doesn’t matter!

▪ Best if data doesn’t change very frequently

25

Send 
FSM

Dest
FSM

sLoad



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Handshake Implementation

❖ Sender:

▪ Input data should be held stable (sLoad) until 
acknowledgement received

▪ Request (sreq) signal should be stable for 𝑚+1 cycles in the 
receiving clock domain to ensure transmission

▪ A new request should not be asserted until the 
acknowledgement from the previous data value has been 
de-asserted

26



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Handshake Implementation

❖ Receiver

▪ Input data should not be sampled (dCtrl) until request 
received

▪ Acknowledgement (dack) signal should be stable for 𝑚+1 
cycles in the sending clock domain to ensure transmission

▪ A new acknowledgement should not be asserted until the 
next request is received

27



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

FIFO Synchronizer

❖ A dual-clock asynchronous FIFO can be used when the 
high latency of a handshake synchronizer cannot be 
tolerated

28



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

FIFO Synchronizer

❖ The golden rules of FIFO buffers still apply: 

▪ The sender should never write when the FIFO is full

▪ The receiver should never reads when the FIFO is empty

❖ Implementation details:

▪ Have to deal with FF synchronizer delays, but not every time

▪ Pointer (read and write) must be gray-coded at their source

• Comparison of gray-coded positions is more complex

▪ Determining full/empty signals on time is tricky

▪ May need to slow data generation rate (or introduce 
breaks/pauses) if not being read fast enough

29



EE/CSE371, Spring 2025L13:  Clock Domain Crossing

Review Questions

❖ A 1-bit signal becomes metastable in the receiving 
domain and is read incorrectly.  This is an example of:

 Data loss Data incoherence Both Neither

❖ What is the trade-off between using an open-loop 
and closed-loop CDC solution?

❖ Which synchronizer is slowest (and why)?

 Flip-flop Recirculation MUX Handshake FIFO

30


	Slide 1: Design of Digital Circuits and Systems Clock Domain Crossing
	Slide 2: Relevant Course Information
	Slide 4: Review: Timing Slack
	Slide 5: Review: Timing Slack
	Slide 6: Clock Domains
	Slide 7: Clock Domain Crossing (CDC)
	Slide 8: Synchronization
	Slide 9: Metastability
	Slide 10: Metastability
	Slide 11: Metastability and CDC
	Slide 12: Metastability and CDC
	Slide 13
	Slide 14: Data Loss
	Slide 15: Data Loss
	Slide 16: Dealing with Data Loss
	Slide 17: Dealing with Data Loss
	Slide 18: Dealing with Data Loss
	Slide 19: Dealing with Data Loss
	Slide 20: Data Incoherence
	Slide 21: Dealing with Data Incoherence
	Slide 22: Synchronization of CDC Data Signals
	Slide 23: Flip-Flop Synchronizer
	Slide 24: Recirculation MUX Synchronizer
	Slide 25: Handshake Synchronizer
	Slide 26: Handshake Implementation
	Slide 27: Handshake Implementation
	Slide 28: FIFO Synchronizer
	Slide 29: FIFO Synchronizer
	Slide 30: Review Questions

