W UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao Josh Wentzien
Selim Saridede Jared Yoder
Derek Thorp

Adapted from material by Justin Hisa

W UNIVERSITY of WASHINGTON EE/CSE371, Spring 2025

Relevant Course Information

«» Quiz 3 starts at 11:50 am
+» Lab 4 due Friday (5/9), demos next week

+» Homework 5 released today, due next Friday (5/16)
= Static Timing Analysis and Pipelining

+ Lab 5 released today, due in two weeks (5/23)
= Hardest lab for many students
" You will need to use the VGA interface on LabsLand

" There’s a creative component and opportunity for extra
credit

EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON

cLK __i/ L //)
Review: Timing Closure o A ;_zl

no slack. 7

G o k) [y

» Fixing hold violations: caused by fast data path and
destination register’s clock latency

= Add delay in the data path with buffers or pairs of inverters
(done automatically by Quartus)

+ Fixing setup violations: data arrives too late
compared to the destination register’s clock speed

= Slow down the clock (undesirable)

= Tell fitter to try harder or confine logic to a smaller area
= Rewrite code to simplify logic
G Add pipelining (today!)

W UNIVERSITY of WASHINGTON L12: Pipelining

Pipelining

EE/CSE371, Spring 2025

+ Pipelining is a set of data processing elements
connected in series with buffer storage inserted

between

" |n digital systems, the buffer storage are FFs & registers and
data processing elements are stages of combinational logic

" |nits simplest form, can be thought of as adding registers in
the middle of a computation to reduce our clock period

27 w—

Reg?

D Q]

11 0 0JCutput

Reg?

DQ

0 11 0JOutput

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Performance

+» What does it mean to say X performs better than Y?

+ Silly example: a Tesla vs. a school bus
= 2015 Tesla Model S P90OD

- 5 passengers, 2.8 secs in quarter mile

= 2011 Type D school bus

- Up to 90 passengers, quarter mile time?

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Performance

+» What does it mean to say X performs better than Y?

+ Silly example: a Tesla vs. a school bus
= 2015 Tesla Model S P90OD

- 5 passengers, 2.8 secs in quarter mile

= 2011 Type D school bus

- Up to 90 passengers, quarter mile time?

W UNIVERSITY of WASHINGTON EE/CSE371, Spring 2025

Measurements of Performance

+» Latency (or response time or execution time)

" Time to complete one task

+ Throughput (or bandwidth)

= Tasks completed per unit time

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Analogy: Doing Laundry

+ Ariel, Selim, Derek and Josh/Jared
each gave one Ioad@gf clothes to

Z
wash, dry,j old, and put away

GO0

@

= Washer takes 30 minutes

" Dryer takes 30 minutes O

= “Folder” takes 30 minutes

= “Stasher” takes 30 minutes to put clothes ﬁ
into drawers

W UNIVERSITY of WASHINGTON

EE/CSE371, Spring 2025

Sequential Laundry

Time
GIPM 7 8 9 10 11 12 1 2AM

| >
- | | | | I I R
30'30 30'30' 30'30'30I 30I 30'5| 30I 30I 30'5| 3o| 30I

S5 A
Task 6 ° k _
Order 6 A
| &

@5 A

= Sequential laundry takes 8 hours for 4 loads

W UNIVERSITY of WASHINGTON EE/CSE371, Spring 2025

Pipelined Laundry

Time
GIPM 7 8 9 10 11 12 1 2AM

|
[
3030 30 30 30 30 30

3 @ A
Task 6 §| j{

Order .
D
| &

R

" Pipelined laundry takes 3.5 hours for 4 loads!

10

W UNIVERSITY of WASHINGTON

Pipelining Notes

+ Pipelining helps throughput
of overall workload, but not
latency of single task

= Reduction in critical pathway
allows for shorter clock period

Task Order

v

+» Moultiple tasks operating

GIPM 7

EE/CSE371, Spring 2025

8

9

simultaneously using different resources

= Executing different parts of multiple computations at the
same time using the same hardware — like an assembly line

" Greater utilization of logic resources

11

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Pipelined Performance Example

» Assume t-p =10 ns, t;44 =90 ns, tp; = 50 ns
= Forsimplicity, assume t, ., = tyire = th =tg, =0
+ Solve for the minimum clock period for each circuit

= Given this minimum clock period, solve for the latency and
throughput of each circuit
= Circuit 1:

Reg?

DQ 110 0]Cutput

. . Reg1 Reg3 Reg?2

" CerUIt 2: Input [0 10 Of== — 1
FL'DQ-'Ei + DQ - DQ 0 1 1 0]output

Input2|0 0 1 1 D

CLKE 1 1

12

W UNIVERSITY of WASHINGTON L12: Pipelining

Pipeline Performance

+ In theory, can measure “speedup” as the ratio in time
per completion (TC) of computations

TCoriginal

= speedup =

TCpipelined
= speedup,,,x = # of pipeline stages

= Speedup is reduced by unbalanced stages (and t;):

Time 100 200 300 400 .
Circuit 1: taaa |tsnil b 150ns
o t t —150ns
add shl
tada 1tsni
Circuit 2: taaa |ltsn ~100ns |

1. 100 ns
Cadd || Lsni —

toaa tsnd |

13

EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Technology
Break

14

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Pipeline Registers

+ Where to add pipeline registers?

" For a given computation, all paths from any input to output
must pass through the same number of pipeline registers

» Example:y; = (a; X b;) X ¢; + d;

300014—|
x4
b|0 0 1 Ot
cl0111 X ‘

dj0001

F=—{1111)y

15

W UNIVERSITY of WASHINGTON

Pipeline Registers

L12: Pipelining EE/CSE371, Spring 2025

+ Where to add pipeline registers?

" For a given computation, all paths from any input to output
must pass through the same number of pipeline registers

» Example:y; = (a; X b;) X ¢; + d;

= Signal flow:

Reg11

alpoo1
X a
blO0O10 -I-
Reg21
Reg12
DQ
cl0111 DaQ a
bl
Reg13 Reg22
djooo1 DQ D Q

16

W UNIVERSITY of WASHINGTON EE/CSE371, Spring 2025

Data Flow Graph

+~ A data flow graph (DFQG) is a visualization tool that
can be used to simplify circuits into directed graphs
= Nodes are computations (and their delays)
= Edges represent data dependencies

qn
b =
+ Y
cn
dnm
/
e

17

L12: Pipelining EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON

Pipeline Cutset

+» A cutset is a set of edges that form two disjoint

graphs when removed/cut
= Feedforward cutset: data travels only forward in the cutset
" feedback cutset: data travels in both directions in the cutset

+ Pipelining is done by placing a register along every
edge in a pipeline (feedforward) cutset:

Pipeline_ Shge 1 Stage Z. Pipeline

regisler\—; d?u/ cutset ('Ff'd- 'Fhfmf‘}“')

N

pipeline
cutset

becke) &
eed EE,_,_ W 18

W UNIVERSITY of WASHINGTON EE/CSE371, Spring 2025

Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node
= For simplicity, assume t-p = 0
" QOriginal (non-pipelined) performance:

19

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node

= Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation

- For simplicity, assume t;p = 0

20

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node

= Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation

- For simplicity, assume t;p = 0

21

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node

= Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation

- For simplicity, assume t;p = 0

22

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Pipeline Desigh Questions

+» When should | add pipelining?
" Check if it is possible first (i.e., a pipeline cutset must exist)
= Want to reduce the critical path in your computation/system
= Your system can afford the increase in latency and hardware

+ Where do the pipeline registers go?

" Must be placed at proper pipeline cutsets

= Want to make pipeline stages as balanced as possible to
maximize speedup

23

W UNIVERSITY of WASHINGTON EE/CSE371, Spring 2025

Designh Example: 16-bit Ripple-Carry Adder

+ Problem: C,, takes a long time to compute!
Dn-1 G- b a, by <o
11 I
Cn — + ‘E\\’ . 'C:—' + < + Co
| l

va! 5| 50

+» 2-stage pipeline: which cutset to use?

bys dys bg ag b, ay b, ag

24

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Design Example: 16-bit Pipelined Adder

clock b[15:0] a[15:0] c_in
[]
Y +
T T T i
— —+> b[158] | a[l58] | b[7:0] Coa[r0]
s ' ‘ Input register: /R [32:0]
B N N %
IR[32:25] |IR[24:17] yIR[16:9] y IR[8:1]
b a IR[0]
'ﬁ&ﬂt 1‘ c_out c_in |
[sum
Y Y f
Y T T
— - | | [
! | Pipeline register: PR[24:0]
N N
{ PR[24:17){ PR[16:9]
b a PR(8]
.S-h‘xg?. 2 c_out c in |- PR[7:0]
sum
|
]
Y
T T
; > |
' ' Output register: OR[16:0]
= L~
c_out sum[15:0]

25

W UNIVERSITY of WASHINGTON

L12: Pipelining

EE/CSE371, Spring 2025

Design Example: 16-bit Pipelined Adder

clock (1) (2) (3) (4) ()

|

a X apagr(1) ayar(2) apar(3)
b X by bgr(1) by br(2) by br(3)
IR X ayagby br(l) | ayarbybr(2) | ayarbybgr(3)
PR ay by (1) sumg(1)lay by (2) sumg(2)lay by (3) sumg(3)
OR X sumy (1) sumpg(1)|sumy (2) sumg(2)|sumy (3) sumg(3)

26

W UNIVERSITY of WASHINGTON L12: Pipelining EE/CSE371, Spring 2025

Design Example: FIR Filter

x[n—2]
B P 0 0 O Z_I—HX[”_M]

6 ‘ ey YrIrl7]

27

W UNIVERSITY of WASHINGTON

L12: Pipelining EE/CSE371, Spring 2025

Design Example: Pipelined FIR Filter

2- 5’[&9 e Fi,ﬁ:.’-la

Pipeline
Cutset
boundary

Pipeline

/ register

’

0

x)._:

x[n]| =

Y

|
7

x[n — 1] "

Y

x[n = 2]

Y

@~ @ ¢

B 1

-
-

LL LI o

Z
X

I x[n — M)

t-

xk
=

yrir [7]
stage 2 man

= M*Z 0
—
(ir)t-!ij'ur uhhnhmel‘]

S
i
-T_

Auge A pex =

x[n] =

stuge 2 max

=€an
>
stage 3 mux
=4 .3
Alternative
< bofilrlllj::ics
-
v
>

00 —~—
e

(%
N
2

yrrln]

maybe more balanccd bt)f“[d' rore. |a.+tnx.?f'|_l

28

	Slide 1: Design of Digital Circuits and Systems Pipelining
	Slide 2: Relevant Course Information
	Slide 3: Review: Timing Closure
	Slide 4: Pipelining
	Slide 5: Performance
	Slide 6: Performance
	Slide 7: Measurements of Performance
	Slide 8: Analogy: Doing Laundry
	Slide 9: Sequential Laundry
	Slide 10: Pipelined Laundry
	Slide 11: Pipelining Notes
	Slide 12: Pipelined Performance Example
	Slide 13: Pipeline Performance
	Slide 14
	Slide 15: Pipeline Registers
	Slide 16: Pipeline Registers
	Slide 17: Data Flow Graph
	Slide 18: Pipeline Cutset
	Slide 19: Pipeline Cutset Example
	Slide 20: Pipeline Cutset Example
	Slide 21: Pipeline Cutset Example
	Slide 22: Pipeline Cutset Example
	Slide 23: Pipeline Design Questions
	Slide 24: Design Example: 16-bit Ripple-Carry Adder
	Slide 25: Design Example: 16-bit Pipelined Adder
	Slide 26: Design Example: 16-bit Pipelined Adder
	Slide 27: Design Example: FIR Filter
	Slide 28: Design Example: Pipelined FIR Filter

