Design of Digital Circuits and Systems Algorithms to Hardware I

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp

Relevant Course Information

- Lab 3 reports due Friday (5/2)
- Lab 4 due next Friday (5/9)
- hw4 due on Wednesday (5/7)
- Anonymous mid-quarter survey on Canvas (due 5/5)
- Quiz 3 (ASM, ASMD) next Thursday (5/8)

Arithmetic Mean

- * Design a sequential circuit that computes the mean M of k n-bit numbers stored in registers
 - e.g., accessing a RAM or register file with k addresses
 - To save on hardware, you can only use one n-bit adder and have a single read port RAM
- Algorithm Pseudocode:

Aside: Counter Variable

- Many sequential hardware algorithms utilize counters
- If both work, is there a preference?
 - How to implement C = k 1 check?

• How to implement C = 0 check?

Arithmetic Mean Specification

Datapath

- A k-address register file (only using r_addr and r_data)
- Reg file address stored in $\lceil \log_2(k) \rceil$ down-counter A
- Sum stored in register S
- An n-bit divider circuit, as discussed last lecture

Control

- Inputs Start and Reset, outputs Ready and Done
- Status signals:
- Control signals:

Arithmetic Mean (ASMD Chart, Initial)

For now, ignore the details of the divider circuit

$$S = 0$$

for $A = k - 1$ to 0
 $S = S + Reg[A]$
end for
 $M = S/k$

Arithmetic Mean (ASMD Chart)

Fix your ASMD chart based on the divider circuit:

Arithmetic Mean Datapath

Technology

Break

Aside: Load Loops

 For some initialization operations, you can get equivalent behavior from either the (1) outgoing edge or the (2) looping edge:

Aside: Start Loops

What happens if we forget to de-assert Start? Fix:

Sorting Algorithm

 \bullet Design a circuit to sort k n-bit numbers stored in a set of registers in <u>ascending</u> order

Algorithm:

```
for i = 0 to k-2 do
    A = Reg[i]
    for j = i+1 to k-1 do
        B = Reg[j]
        if B < A then
            Reg[i] = B
            Reg[j] = A
            A = Reg[i]
        endif
    endfor</pre>
```

Example (k=4):

i	j	А	В	R[0]	R[1]	R[2]	R[3]
0	1	3	7 🗶	3	7	1	0
0	2	3	l,	3 -	7	7	٥
0	3	1	0,	1	7	3	0
1	2(111)	7	3 ,	0	7"	3	l
l	ى م	3	1/	O	3	7	1
2	3(141)	7	3 🗸	0	l	7	3
	 		 	0	}	3	7

Sorting Algorithm Specification

Datapath

- A k-address register file (assume only 1 port)
- Two $\lceil \log_2(k) \rceil$ up-counters i and j
- Two registers A and B
- An n-bit comparator circuit to check for B < A

Control

- Inputs Start and Reset, outputs Ready and Done
- Status signals:
- Control signals:

Sorting Algorithm Specification

Datapath

- A k-address register file (assume only 1 port)
- Two $\lceil \log_2(k) \rceil$ up-counters i and j
- Two registers A and B
- An n-bit comparator circuit to check for B < A

Timing Notes:

- RTL operations in a state occur on the next clock trigger
- Can i ← x and A ← Reg[i] be done simultaneously?
- Can Reg[i] ← B and Reg[j] ← A be done simultaneously?
- Swap operations must be done sequentially

Sorting Algorithm (ASMD Chart)

Sorting Algorithm (ASMD Chart)

Sorting Algorithm Datapath

Alternate Sort Algorithm Datapath (1/2)

Alternate Sort Algorithm Datapath (2/2)

Lab 4 Preview: Binary Search

Design a circuit that searches a sorted array for a given value by checking the middle element of the remaining portion of the array we would expect to

find the given number:

```
while L <= R do
   m = floor((L + R)/2)
   if A[m] < T then
      L = m + 1
   else if A[m] > T then
      R = m - 1
   else
      return m
   endif
endwhile
return unsuccessful
```