Design of Digital Circuits and Systems ASM with Datapath II

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao

Selim Saridede

Derek Thorp

Josh Wentzien Jared Yoder

Adapted from material by Justin Hisa

Relevant Course Information

- Homework 3 due Friday (4/25)
- Homework 4 released Thursday
- Quiz 2 (ROM, RAM, Reg files) this Thu at 11:50 am
 - Based heavily on Homework 2
 - Memory sizing, addressing, initialization, and implementation (*i.e.*, circuit diagram)
- Lab 3 reports due next Friday (5/2)
 - Ideally finish by early next week so you can start Lab 4, which will be released this Thursday

ASMD Design Procedure

- From problem description or algorithm pseudocode:
 - **1)** Identify necessary datapath components and operations
 - 2) Identify states and signals that cause state transitions (external inputs and status signals), based on the necessary sequencing of operations
 - 3) Name the control signals that are generated by the controller that cause the indicated operations in the datapath unit
 - 4) Form an ASM chart for your controller, using states, decision boxes, and signals determined above
 - 5) Add the datapath RTL operations associated with each control signal

Input data

Datapath

unit

Output

data

Control

Status signals

Input signals (external)

Control unit

(FSM)

Design Example

- System specification:
- ddupath = Flip-flops E and F
- determine 4-bit binary counter $\underline{A} = 0bA_3A_2A_1A_0$

- Active-low reset signal <u>reset_b</u> puts us in state <u>S_idle</u>, where we remain while signal Start = 0
- Start = 1 initiates the system's operation by clearing A and

control

status

signal

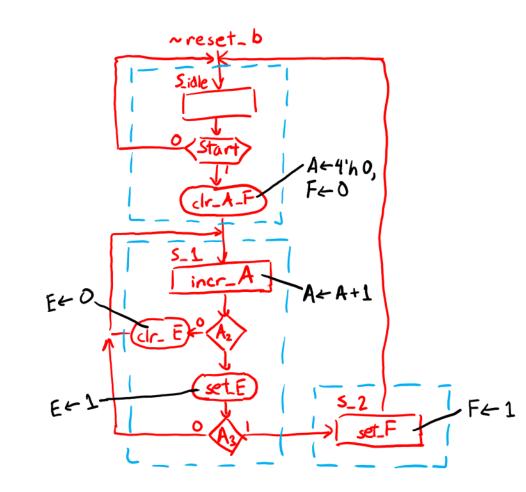
contro

signals

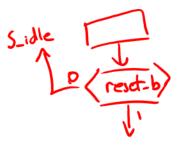
- C clr_A-F F. At each subsequent clock pulse, the counter is incremented by 1 until the operations stop.
- Bits A_2 and A_3 determine the sequence of operations:
 - If $A_2 = 0$, set *E* to 0 and the count continues
 - If $A_2 = 1$, set *E* to 1; additionally, if $A_3 = 0$, the count continues, otherwise, wait one clock pulse to set F to 1 and stop counting (i.e., Lset_F back to *S_idle*)

Design Example #1 (ASMD Chart)

Synchronous or <u>asynchronous</u> reset?



for sychronous reset, add decision box on reset-b out of every state box:



Design Example #1 (SV, Controller) status signals (in) external inputs (in) module controller (set_E, clr_E, set_F, clr_A_F, incr_A, A2, A3, Start, clk, reset b); // port definitions input logic Start, clk, reset_b, A2, A3; output logic set_E, clr_E, set_F, clr_A_F, incr_A; // define state names and variables enum logic [1:0] {S_idle, S_1, S_2 = 3} ps, ns; // next state logic // controller logic w/synchronou always_comb always_ff @(posedge clk) case (ps) if (~reset_b) S_idle: ns = Start ? S_1 : S_idle; ps <= S_idle;</pre> $S_1:$ ns = (A2 & A3) ? $S_2 : S_1;$ else S 2: ns = S idle; ps <= ns; endcase // output assignments assign set_E = (ps == S_1) & A2; assign clr_E = (ps == S_1) & ~A2; assign set_F = (ps == S_2); assign clr_A_F = (ps == S_idle) & Start; assign incr_A = $(ps == S_1);$ endmodule // controller

control signals (in)

status signals (aut)

external inputs (in) external outputs (out)

Design Example #1 (SV, Datapath)

```
module datapath (A, E, F, clk, set_E, clr_E, set_F, clr_A_F,
               incr_A);
   // port definitions
   output logic [3:0] A;
   output logic E, F;
   input logic clk, set_E, clr_E, set_F, clr_A_F, incr_A;
   // datapath logic
   always_ff @(posedge clk) begin
      if (clr_E) E <= 1'b0;
      else if (set_E) E <= 1'b1;</pre>
      if (clr_A_F)
         begin
            A <= 4 b0;
            F <= 1'b0;
         end
      else if (set_F) F <= 1'b1;</pre>
      else if (incr_A) A <= A + 4'h1;</pre>
   end // always_ff
endmodule // datapath
```

Design Example #1 (SV, Top-Level Design)

```
module top_level (A, E, F, clk, Start, reset_b);
   // port definitions
   output logic [3:0] A;
   output logic E, F;
   input logic clk, Start, reset_b;
   // internal signals (control signals and status signals that oren't outputs)
   logic set_E, clr_E, set_F, clr_A_F, incr_A;
   // instantiate controller and datapath
   controller c_unit (.set_E, .clr_E, .set_F,
                        .clr_A_F, .incr_A, .A2(A[2]),
                        .A3(A[3]), .Start, .clk,
                        .reset_b);
   datapath d_unit (.*);
endmodule // top_level
```

Design Example #2: Fibonacci

Design a sequential Fibonacci number circuit with the following properties:
 start
 fib

clk

- i is the desired sequence number
- f is the computed Fibonacci number:

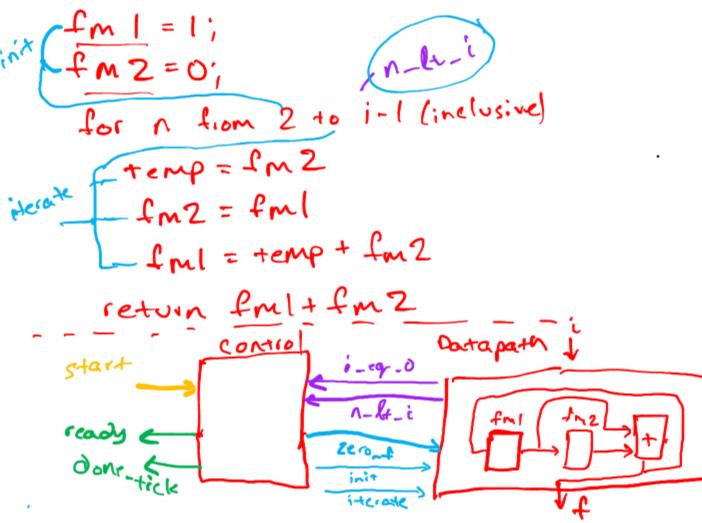
$$fib(i) = \begin{cases} 0, & i = 0\\ 1, & i = 1\\ fib(i-1) + fib(i-2), & i > 1 \end{cases}$$

- ready means the circuit is idle and ready for new input
- start signals the beginning of a new computation
- done_tick is asserted for 1 cycle when the computation is complete

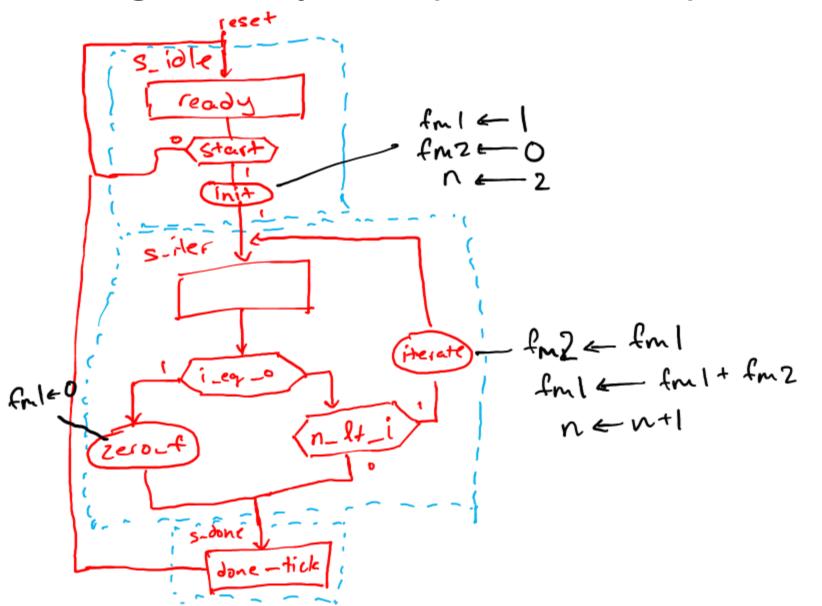
Design Example #2 (Pseudocode)

- Pseudocode analysis:
 - Variables are part of datapath; assignments become RTL operations
 - Chunks of related actions should be triggered by control signals
 - Decision points become status signals

Design Example #2 (Control-Datapath)



Design Example #2 (ASMD Chart)



Design Example #2 (SV)

```
fib_control:
  // port definitions
   // define state names and variables
  // controller logic w/synchronous reset
  // next state logic
   // output assignments
fib_datapath:
  // port definitions
  // datapath logic
fib:
  // port definitions
  // define status and control signals
  // instantiate control and datapath
```

Other Hardware Algorithms

- Sequential binary multiplier or divider
- Arithmetic mean
- Lab 4: Bit counting
- Lab 4: Binary search
- Lab 5: Bresenham's line

Technology

Break

Hardware Acceleration

- ASMD as a design process can be used to implement software algorithms
- Custom hardware can accelerate operation:
 - Hardware can better exploit parallelism
 - Hardware can implement more specialized operations
 - Hardware can reduce "processor overhead" (*e.g.*, instruction fetch, decoding)
- "Hardware accelerators" are frequently used to complement processors to speed up common, computationally-intensive tasks
 - *e.g.*, encryption, machine vision, cryptocurrency mining

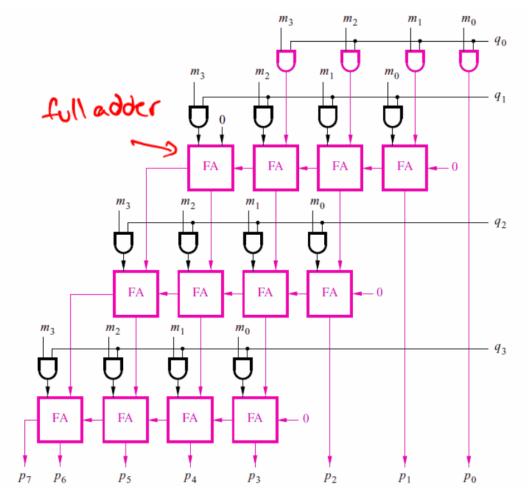
Binary Multiplication

Multiplication of unsigned numbers

							Multip Multip	olicand	M (1- (1		1110 x 1011	
Multiplicand M Multiplier Q	<u>1</u> (14) (11)		11				Partial	produc	et O		1110 + 1110	
MulupherQ	(11)		11	10 🔺			Partial	produc	et 1		10101 + 0000	
			111 000 10	0			Partial	produc	et 2	+	01010	
Product P	(154)	100		10			Produc	ct P	(15	÷	10011010	
(a) Multiplication by hand							(b) Using multiple adders					
							<i>m</i> ₃	<i>m</i> ₂	m_1	<i>m</i> ₀		
						x	q_3	q_2	q_1	q_0		
-	Partial produ	ct 0			+	<i>m</i> ₃ <i>q</i> ₁		$\frac{m_2 q_0}{m_1 q_1}$	$\frac{m_1q_0}{m_0q_1}$	$m_0 q_0$		
— 1	Partial produ	ct 1			$\overline{PP1_5}$	$PP1_4$	PP1 ₃	<i>PP</i> 1,	PP1 ₁			
				+	m_3q_2		-	~	. 1			
~ 1	Partial produ	ct 2		PP2 ₆	<i>PP</i> 2 ₅	$PP2_4$	PP2 ₃	$PP2_2$				
			+	$m_{3}q_{3}$	m_2q_3	$m_1 q_3$	$m_0 q_3$	1				
	Product P		<i>p</i> ₇	P_6	<i>p</i> ₅	<i>P</i> ₄	<i>p</i> ₃	P_2	<i>p</i> ₁	<i>P</i> ₀		
c) Hardware implementation												

Parallel Binary Multiplier

Parallel multipliers require a lot of hardware



Sequential Binary Multiplier

- Design a sequential multiplier that uses only one adder and a shift register
 - Assume one clock cycle to shift and one clock cycle to add
 - More efficient in hardware, less efficient in time
- Considerations:
 - *n*-bit multiplicand and multiplier yield a product at most how wide? 2n
 - What are the ports for an n-bit adder?
 - How many shift-and-adds do we do and how do we know when to stop?

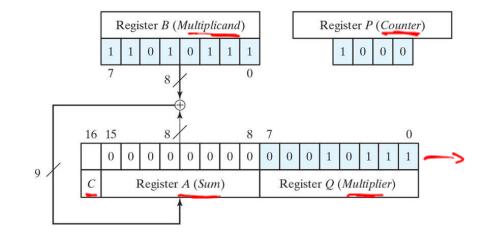
Sequential Binary Multiplier

- Design a sequential multiplier that uses only one adder and a shift register
 - Assume one clock cycle to shift and one clock cycle to add
 - More efficient in hardware, less efficient in time
- Implementation Notes:
 - If current bit of multiplier is 0, then skip the adding step
 - Instead of shifting multiplicand to the left, we will shift the partial sum (and the multiplier) to the right
 - We will re-use the multiplier register for the lower half of the product
 - Treat carry, partial sum, and multiplier as one shift register {C, A, Q}

Sequential Binary Multiplier Operation

A few steps of:
 11010111
 x 00010111

In case this got confusing writing all the bits, all we're doing here is computing the partial products



Т

Operation (completed)	С	Α	Q	Р
Initialize computation	0	000000000	0001011	1000).
Add (Q[0]=1)	0	11010111	00010111	0111
Shift		01101011	1000101	olu v
A22 (Q[0]=1)	1	* 1 10 1 5 1 1 1 0 10 0 0 0 10	10001011	0110 2
shift			01000 (0)	0110
		I I		

ł

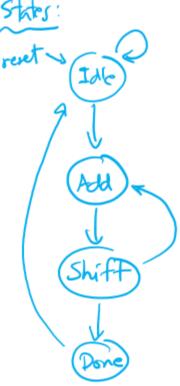
Binary Multiplier Specification

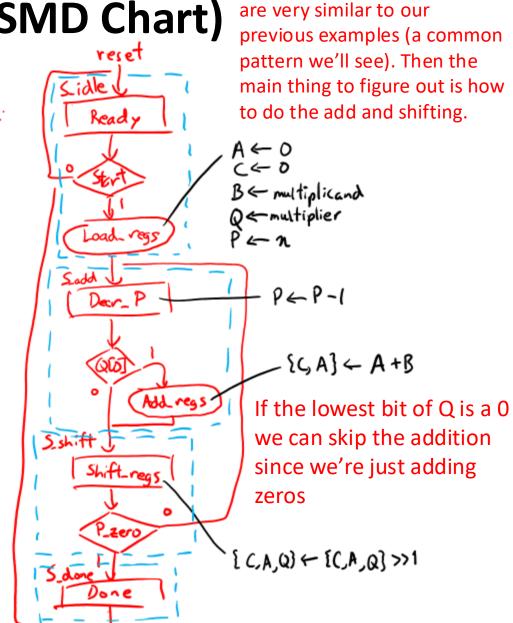
- Datapath
 - (2n+1)-bit shift register with bits split into 1-bit C, n-bit A, and n-bit Q
 - Multiplicand stored in register <u>B</u>, multiplier stored in <u>Q</u>
 - An *n*-bit *parallel adder* adds the contents of *B* to *A* and outputs to {*C*, *A*}
 - A $\lceil \log_2(n+1) \rceil$ -bit counter P
- Control
 - Inputs *Start* and *Reset*, outputs *Ready* and *Done*
 - Status signals: Q[o] P. 2
 - Control signals: shift_regs, load-regs, add-regs, der_P

The start, init, and done logic

Binary Multiplier (ASMD Chart)

If it helps you can start by drawing an FSM to outline the states you need before creating the ASM chart ASMD





Binary Multiplier Implementation

Controller Logic

$$Load_regs = S_idle \cdot Start$$

$$Mealy type output that we assert in the idle stat if start is high$$

$$Shift_regs = S_idle \cdot Start$$

$$Moore type output we always assert in the shift state$$

$$Add_regs = S_add \cdot Q[o]$$

$$Decr_P = S_add$$

$$Ready = S_idle$$

$$Done = S_dece$$

Binary Multiplier (SV, Datapath)

```
module datapath #(parameter WIDTH=8)
                (product, Q, P, multiplicand, multiplier, clk,
                 Load regs, Shift regs, Add regs, Decr P);
  // port definitions
   output logic [2*WIDTH-1:0] product;
   output logic [WIDTH-1:0] Q, P; // note: unnecessary bits for P
   input logic [WIDTH-1:0] multiplicand, multiplier;
   input logic clk, Load_regs, Shift_regs, Add_regs, Decr_P;
  // internal logic
  logic C;
   logic [WIDTH-1:0] A, B;
  // datapath logic
```

Binary Multiplier (SV, Datapath)

```
module datapath #(parameter WIDTH=8)
                  (product, Q, P, multiplicand, multiplier, clk,
                   Load regs, Shift regs, Add regs, Decr P);
   // port definitions
   . . .
   // internal logic
   . . .
   // datapath logic
   always_ff @(posedge clk) begin
      if (Load_regs) begin
          A \le 0; C \le 0; P \le WIDTH;
          B <= multiplicand;</pre>
          Q <= multiplier;
      end
      if (Decr_P) P <= P - 1;</pre>
      if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
   end // always_ff
   assign product = {A, Q};
endmodule
```