W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

\\ //
' \ ! \

SCAN QR CODE TO VIEW THE

DROP-'N TUTORING SCHEDULE
TUTORING I
AVAILABLE
FOR A SELECTION
OF EE
UNDERGRADUATE
CLASSES!

¢ NOW LOCATED IN ECE RM 443!
¢¢ Take the elevator to floor 4R and

follow signage to 443.

W UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao Josh Wentzien
Selim Saridede Jared Yoder
Derek Thorp

Adapted from material by Justin Hisa

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Relevant Course Information

+» Homework 2 due Wednesday (4/16)
+» Homework 3 released today, due next Friday (4/25)

+» Lab 2 reports due 4/18, demos 4/21-25
+» Lab 3 released today, due in two weeks (5/2)

= Lab 3 +4 arereally ~1.5 weeks long, so don’t wait!

+» Quiz 2 not until next Thursday (4/24)

= Spacing between material and quiz will get longer and
longer; make sure to give time to review

EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON

Lab 3 Notes

LO5: Algorithmic State Machines

+» More practical applications of memory on the DE1-
SoC using audio generation and filtering
= Task 2: ROM with MIF file to generate audio
= Task 3: Use a FIFO buffer to implement a noise filter

+ See Audio_Guide. pdf in the spec for how to use
——————
the LabsLand Audio Interface to send audio input and
record audio output:

DE1-SoC
FPGA

1

Microphone

—>

Speaker

< <

absLand Audi

0
Source

—> <

absLand Audio
Recorder

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Lab 3 Notes

+» Example of communication as you interface with an
audio CODEC (coder/decoder)

" |nputs: read,

write,

. read ready -
writedata_left, write_ready |

. . read
writedata_right Audio o wite

CODEC readdata=left - Your Circunt
= Qutputs: read_ready, Interface [readdata night _} e

write_ready, [ritedats_right

readdata_left,
readdata_right

= Must wait for both sides (CODEC + your circuit) to be ready
for data transmission in either direction!

- Data is ready/generated and receiver is ready to accept

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Review Question: Decoder

+» 2:4 binary decoder has 2 select bits that specify which
of 4 output bits is high (the others are low) —
implement one below using only NOT, AND, and OR
gates: - T

o) [H—e-
z: T | '_{_Eﬁ'—@dz
57 e
¢dect ,f:D"_@do

s1|@]| so|®

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Review Question: DEMUX o[o

out 2
» Implement a 2-bit, 2-to-4 DEMUX: ";[“* out 3
= A DEMUX takes an input bus m1|® .
3 MOut3_1
and connects to one of many = 8 g 1 ovt3
output buses specified by ' o — ®outs_o|
selector bits - ~
{QZZ‘D —®outz_1
= Assume you have a working ot
2:4 binary decoder and dr_H*D @outz.o_
write in the signals d, d4, d, gy D @out
and d where needed. B T oot
— d| D —@Ouﬂ_o

| (2 8=

V. 7

])

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Simple Reg File uses DEMUX

w_data Z
w_en 4 X 8-bit
w_addr 7 Regfile
r_addr

MUX 00100010} data

r_addr E

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Specifying Synchronous Digital Systems

+~ So far:
= SystemVerilog
= Block diagrams
" Finite State Machines

= Circuit/gate diagrams

<+ |lssues:

= SVis a specified language (rigid syntax) and can be very
abstract (behavioral)

= Block diagrams can be vague or unspecified
= FSMs don’t scale well (# of states + transitions)
= Gate-level is too detailed and specific

EE/CSE371, Spring 2025

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines

Algorithmic State Machine (ASM)

+» ASM charts are a method for designing and depicting
synchronous digital systems
= Use more generic syntax (RTL) than SystemVerilog
" Contain more structured information than FSM state

diagrams Reset_b
= Can more easily design - | oo
your system from a S

hardware algorithm
!

10

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Control and Datapath

+ Signal classification in a SDS:
= Data: information manipulated/processed by the system

" Control: signals that coordinate and execute the system
operations

+» We can logically separate a SDS into two distinct

parts/circuits: dita

* Datapath: partsneeded = I 1
for data manipulation (’f,[) . signals .
(“the brawn”) —'_’ M':‘.}iil\f;] it :

" Control: logic that | [oeeens el ,
tells the datapath what e l --- 1
needs to be done (“the brain”) e ooy

11

W UNIVERSITY of WASHINGTON

LO5: Algorithmic State Machines

EE/CSE371, Spring 2025

Control and Datapath: FIFO Buffer

+ Circular gueue implementation from last lecture:
= Datapath and control split?

1 H{\
~~ o | Datapd
r \ I
t
w_data »{w_data r_data » r_data (’I;IZILII
(l w_en

I I » w_addr r_addr
| Control !
Input i signals :
r > registerﬁle signals i i i
(external) ; Control unit Datapath i
]\,. —= i (FSM) unit ;
N | < , i
~ — e - ! i
— ! 1als . |
w_addr r_addr x i 5

full - (1 full empty p—————+ empty Status Output

(FIEO (indicators data

|,\ P> control circuit
corie| /
o — —

12

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Algorithms for Hardware

+» Sequential algorithms:
= Variables used as symbolic memory locations
= Sequential execution dictates the ordering of operations

+» Hardware implementation:
= Registers store intermediate data (variables)

= Datapath implements all necessary register operations
(computations attached to register inputs)

= A control path FSM specifies the ordering of register
operations

+ This design scheme sometimes referred to as
register-transfer level (I_Rll.__) design

13

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines

Algorithms for Hardware

EE/CSE371, Spring 2025

Ct = CME?MAF%[
SL = Seqlenke |

+~ The resulting system is called an algorithmic state
machine (ASM) or FSM with a datapath (FSMD):

data path

____________________________________ N
LL eL/iL cL SL
d q
routing : ‘ routing data
data network functional units network > registers
input

eL L L-{L .:

q
.| next-state | state output

: data
output

status

: logic > register logic :
command : T F :

control path
T E——

14

W UNIVERSITY of WASHINGTON

LO5: Algorithmic State Machines

RTL Operations

+ Basic form:

Tdest = f(rsrcl» Tsrc2y »+ s rsrcn)
= 1; represent registers and f () represents some

combinational function

«» Examples:

(L I
"y« 0 cleer [

r, 1 eplace rq worth Ndue in f

e > 3
l<i+1

d < S;+ S, + S5
ye—ax*a

)

2
£ 5

z2—

o2

v

EE/CSE371, Spring 2025

15

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

RTL Operations

+ Basic form:

Tdest < f(rsrclr Tsrc2y o+ rsrcn)

= 1; represent registers and f () represents some
combinational function

« Timing Interpretation:

= After the start of a clock cycle, the outputs of all registers
update and become available

= During the rest of the clock cycle, these outputs propagate
through the combinational circuit that performs f ()
==

= At the next clock trigger/cycle, the result is stored into rgest

16

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

RTL Operations

+ Basic form:

Tdest < f(rsrclw Tsrc2y o+ rsrcn)

= 1; represent registers and f () represents some
combinational function

« Implementation Example: a«<a—b + 1
Q-2+ =7 7-347S

R N

I"hrt- b_reg { : 3)
{

Tl -
-9

17

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Technology
Break

18

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

ASM Chart <

S.0

Output signals
or actions
(Moore type)

0 (False)

Condition
expression

C}ﬂlj \
ents i~ 3 Pﬂ‘_}_h
(a) State box (b) Decision box
! 1 state box + !
o l all decision and I
Conditional outputs I ditional b I
or actions (Mealy type) ‘:,_:___._,wn ruonal boxes -
| c_onne_cted to ;
hag Ao [_;e_ : its exit path :
oorpot R henceedoeod
| Condrtion
(¢) Conditional output box (d) ASM block

19

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

ASM Blocks

+» Each block describes the state machine operationin a
given state

" For every valid combination of inputs, there must be exactly
one exit path

= There should be no internal feedback

20

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Worked Example #1

«» Convert this state machine to an ASM chart:

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Worked Example #2

«» Convert this state machine to an ASM chart:

A1
Reset Erc'ﬁt'
L w=1/z=0
w=0/z=0

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Example #3

«» Draw an ASM chart for threeOnes: asserts out iff

hd /)
last 3 vaﬂliﬁs*of inwereall1's. . 4cc

-
|
(¢ m — = — 77
{‘F (';’l ¢ \'___rf'-"_"_'
S T
4@‘7’9. l (1 <_I
— | v (| (

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Example #4

«» Convert this state machine to an ASM chart:
= linput: X, 5outputs: Y,, Y, Y. (Moore), Z,, Z, (Mealy)

5,: ']’ — —
e X/Z1ZZ X/2122

X/Z4Z;
X/ L4725 X/2:7; > %

W UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2025

Worked Example #5 (Preview)

«» Convert the ASM chart for a control circuit shown in
figure (b) to a state diagram:

Reset_b Reset_b

y 010 y 011 100 y 010 y 011 y 100
S_1 K2) S_1 82 S.3

(El) (h)

25

	Slide 1
	Slide 2: Design of Digital Circuits and Systems Algorithmic State Machines
	Slide 3: Relevant Course Information
	Slide 4: Lab 3 Notes
	Slide 5: Lab 3 Notes
	Slide 6: Review Question: Decoder
	Slide 7: Review Question: DEMUX
	Slide 8: Simple Reg File uses DEMUX
	Slide 9: Specifying Synchronous Digital Systems
	Slide 10: Algorithmic State Machine (ASM)
	Slide 11: Control and Datapath
	Slide 12: Control and Datapath: FIFO Buffer
	Slide 13: Algorithms for Hardware
	Slide 14: Algorithms for Hardware
	Slide 15: RTL Operations
	Slide 16: RTL Operations
	Slide 17: RTL Operations
	Slide 18
	Slide 19: ASM Chart
	Slide 20: ASM Blocks
	Slide 21: Worked Example #1
	Slide 22: Worked Example #2
	Slide 23: Example #3
	Slide 24: Example #4
	Slide 25: Worked Example #5 (Preview)

