
EE/CSE371, Spring 2025L05: Algorithmic State Machines

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Design of Digital
Circuits and Systems
Algorithmic State Machines

Instructor: Vikram Iyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp

Adapted from material by Justin Hisa

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Relevant Course Information

❖ Homework 2 due Wednesday (4/16)

❖ Homework 3 released today, due next Friday (4/25)

❖ Lab 2 reports due 4/18, demos 4/21-25

❖ Lab 3 released today, due in two weeks (5/2)

▪ Lab 3 + 4 are really ~1.5 weeks long, so don’t wait!

❖ Quiz 2 not until next Thursday (4/24)

▪ Spacing between material and quiz will get longer and
longer; make sure to give time to review

3

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Lab 3 Notes

❖ More practical applications of memory on the DE1-
SoC using audio generation and filtering

▪ Task 2: ROM with MIF file to generate audio

▪ Task 3: Use a FIFO buffer to implement a noise filter

❖ See Audio_Guide.pdf in the spec for how to use
the LabsLand Audio Interface to send audio input and
record audio output:

4

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Lab 3 Notes

❖ Example of communication as you interface with an
audio CODEC (coder/decoder)

▪ Inputs: read,
 write,
 writedata_left,
 writedata_right

▪ Outputs: read_ready,
 write_ready,
 readdata_left,
 readdata_right

▪ Must wait for both sides (CODEC + your circuit) to be ready
for data transmission in either direction!
• Data is ready/generated and receiver is ready to accept

5

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Review Question: Decoder

❖ 2:4 binary decoder has 2 select bits that specify which
of 4 output bits is high (the others are low) –
implement one below using only NOT, AND, and OR
gates:

6

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Review Question: DEMUX

❖ Implement a 2-bit, 2-to-4 DEMUX:

▪ A DEMUX takes an input bus
and connects to one of many
output buses specified by
selector bits

▪ Assume you have a working
2:4 binary decoder and
write in the signals 𝑑0, 𝑑1, 𝑑2,
and 𝑑3 where needed.

7

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Simple Reg File uses DEMUX

8

w_data

4 × 8-bit
Regfile

w_en
8

8
r_data

w_addr

r_addr

CLK

2

2

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Specifying Synchronous Digital Systems

❖ So far:

▪ SystemVerilog

▪ Block diagrams

▪ Finite State Machines

▪ Circuit/gate diagrams

❖ Issues:

▪ SV is a specified language (rigid syntax) and can be very
abstract (behavioral)

▪ Block diagrams can be vague or unspecified

▪ FSMs don’t scale well (# of states + transitions)

▪ Gate-level is too detailed and specific

9

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Algorithmic State Machine (ASM)

❖ ASM charts are a method for designing and depicting
synchronous digital systems

▪ Use more generic syntax (RTL) than SystemVerilog

▪ Contain more structured information than FSM state
diagrams

▪ Can more easily design
your system from a
hardware algorithm

10

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Status

indicators

Control and Datapath

❖ Signal classification in a SDS:

▪ Data: information manipulated/processed by the system

▪ Control: signals that coordinate and execute the system
operations

❖ We can logically separate a SDS into two distinct
parts/circuits:

▪ Datapath: parts needed
for data manipulation
(“the brawn”)

▪ Control: logic that
tells the datapath what
needs to be done (“the brain”)

11

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Control and Datapath: FIFO Buffer

❖ Circular queue implementation from last lecture:

▪ Datapath and control split?

12

Status

indicators

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Algorithms for Hardware

❖ Sequential algorithms:

▪ Variables used as symbolic memory locations

▪ Sequential execution dictates the ordering of operations

❖ Hardware implementation:

▪ Registers store intermediate data (variables)

▪ Datapath implements all necessary register operations
(computations attached to register inputs)

▪ A control path FSM specifies the ordering of register
operations

❖ This design scheme sometimes referred to as
register-transfer level (RTL) design

13

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Algorithms for Hardware

❖ The resulting system is called an algorithmic state
machine (ASM) or FSM with a datapath (FSMD):

14

EE/CSE371, Spring 2025L05: Algorithmic State Machines

RTL Operations

❖ Basic form:
𝑟dest ← 𝑓 𝑟src1, 𝑟src2, … , 𝑟src𝑛

▪ 𝑟𝑖 represent registers and 𝑓() represents some
combinational function

❖ Examples:

▪ 𝑟1 ← 0

▪ 𝑟2 ← 𝑟1
▪ 𝑟2 ← 𝑟2 ≫ 3

▪ 𝑖 ← 𝑖 + 1

▪ 𝑑 ← 𝑠1 + 𝑠2 + 𝑠3
▪ 𝑦 ← 𝑎 ∗ 𝑎

15

EE/CSE371, Spring 2025L05: Algorithmic State Machines

RTL Operations

❖ Basic form:
𝑟dest ← 𝑓 𝑟src1, 𝑟src2, … , 𝑟src𝑛

▪ 𝑟𝑖 represent registers and 𝑓() represents some
combinational function

❖ Timing Interpretation:

▪ After the start of a clock cycle, the outputs of all registers
update and become available

▪ During the rest of the clock cycle, these outputs propagate
through the combinational circuit that performs 𝑓()

▪ At the next clock trigger/cycle, the result is stored into 𝑟dest

16

EE/CSE371, Spring 2025L05: Algorithmic State Machines

RTL Operations

❖ Basic form:
𝑟dest ← 𝑓 𝑟src1, 𝑟src2, … , 𝑟src𝑛

▪ 𝑟𝑖 represent registers and 𝑓() represents some
combinational function

❖ Implementation Example: 𝑎 ← 𝑎 − 𝑏 + 1

17

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Technology

Break
18

EE/CSE371, Spring 2025L05: Algorithmic State Machines

ASM Chart

19

1 state box +

all decision and

conditional boxes

connected to

its exit path

(d) ASM block

EE/CSE371, Spring 2025L05: Algorithmic State Machines

ASM Blocks

❖ Each block describes the state machine operation in a
given state

▪ For every valid combination of inputs, there must be exactly
one exit path

▪ There should be no internal feedback

20

S0

X0

1

S0

X0

1

S0

X0

1

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Worked Example #1

❖ Convert this state machine to an ASM chart:

21

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Worked Example #2

❖ Convert this state machine to an ASM chart:

22

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Example #3

❖ Draw an ASM chart for threeOnes: asserts out iff
last 3 values of in were all 1’s.

23

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Example #4

❖ Convert this state machine to an ASM chart:

▪ 1 input: X, 5 outputs: Ya, Yb, Yc (Moore), Z1, Z2 (Mealy)

24

S0/
YaഥYbഥYc

S1/
ഥYaYbഥYc

S2/
ഥYaഥYbYc

ഥX/തZ1തZ2

X/തZ1തZ2

ഥX/തZ1തZ2
X/തZ1Z2

X/തZ1തZ2

ഥX/Z1തZ2

EE/CSE371, Spring 2025L05: Algorithmic State Machines

Worked Example #5 (Preview)

❖ Convert the ASM chart for a control circuit shown in
figure (b) to a state diagram:

25

Clear_R

	Slide 1
	Slide 2: Design of Digital Circuits and Systems Algorithmic State Machines
	Slide 3: Relevant Course Information
	Slide 4: Lab 3 Notes
	Slide 5: Lab 3 Notes
	Slide 6: Review Question: Decoder
	Slide 7: Review Question: DEMUX
	Slide 8: Simple Reg File uses DEMUX
	Slide 9: Specifying Synchronous Digital Systems
	Slide 10: Algorithmic State Machine (ASM)
	Slide 11: Control and Datapath
	Slide 12: Control and Datapath: FIFO Buffer
	Slide 13: Algorithms for Hardware
	Slide 14: Algorithms for Hardware
	Slide 15: RTL Operations
	Slide 16: RTL Operations
	Slide 17: RTL Operations
	Slide 18
	Slide 19: ASM Chart
	Slide 20: ASM Blocks
	Slide 21: Worked Example #1
	Slide 22: Worked Example #2
	Slide 23: Example #3
	Slide 24: Example #4
	Slide 25: Worked Example #5 (Preview)

