YA/ UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao Josh Wentzien
Selim Saridede Jared Yoder
Derek Thorp

Adapted from material by Justin Hisa

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Relevant Course Information

<+ hwl due on Monday (4/7)

= Homework can be completed in groups of up to 4

+» Lab 1 report due Friday (4/11)

= Labs can be completed in groups of up to 2

« Lab demos:

= Lab demo sign up sheet sent out soon (check with partner)
= 15 minutes for demos, early labs will be quicker
= Make sure LabsLand is set up and synthesized beforehand

1D
% Quiz 1 is Thursday, April 4 in last 25 min of lecture
" Draw FSM state diagram & make design decisions

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

Lecture Outline

+ SystemVerilog Review & Tips (Cont.)
« FSMs
+ Test Benches

EE/CSE371, Spring 2025

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Review: Integers in Computing >

+» Unsigned integers follow the standard base 2 system
® b,bebcbybsb,bibg = b,27 + be26 + -« + by 21 + b, 2°
" |nn bits, represent integers 0 to 2™ — 1

+ Signed integers use Two’s Complement representation

" by—1 has weight —

2% L, other bits have usual weights 421
Z

' ¥
>r bw-l bw2(r/ S bO

" |n n bits, represent integers —2""1to 271 — 1

= Most significant bit acts as a sign bit (0 = pos, 1 = neg)

®= Handy negation procedure: take the bitwise complement
and thenaddone(~x + 1 == -x)

'\ The choice affects the behavior of operations such
as bit extension, shifting, and comparisons

YA UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

EE/CSE371, Spring 2025

271/369 SystemVerilog Refresher

Y
« Multi-bit constants: <n>'<s>#..#
= <n> is width (unsized by default) ‘
= <s> issigned designation (omit or ‘s’)
= is radix/base specifier (decimal by default)

= All letters are case-insensitive, _ can be used to add spaces
1

7 \(J

Literal Width Base Bits Literal Width Base Bits
3'd6 3 10 0ll0 42 UngiEed

6'042 G < loo olo| | 'b1ol| w

8’ hAB R b lolo e —(i_'ijg) 3 [o ed4 10)

« Compiler will usually warn you if there is a size mismatch
= Can “cast” using #' (<sig>) syntax

YA/ UNIVERSITY of WASHINGTON

Basic Operators

+ Possibly new:
= 3/1%271—-100

o

B D%xx3 5 8
7> — &

L02: System Verilog and FSM Review

EE/CSE371, Spring 2025

Type Symbol Description
Arithmetic + addition

- subtraction

* multiplication

/ division

% modulus

* % exponentiation
Shift >> logical right shift

<< logical left shift

>>> arithmetic right shift

<< J.lecal left shift
Relational > greater than

< less than

>= greater than or equalto

<= less than or equalto
Equality == equality

| = inequality

=== case equality

l == case inequality
Bitwise ~ bitwise negation

& bitwise and

| bitwise or

A bitwise xor
Logical ! logical negation

&& logical and

| | logical or

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Ternary Operator

«» Conditional assignmeﬁcnt flee B

e RV
" select ? <then_expr> iglse_expr>

S~ g)
- If select is true, tThen evaluates to <then_expr>, otherwise
evaluates to <e'lse_expr>

= \What does this look like in hardware?

A__
=
«~ Example: tristate buffer ’T’r

= enable ? in : 'bZ

- When enabled, pass the input to the output, otherwise be high
impedance eneole

f'f\ v o~/
—

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Bit Manipulation

+ Concatenation: {sig, .., s1g}
" Ordering matters; result will have combined widths of all
signals
+ Replication operator: {n{m}}

" repeats value m, n times

+» Exercise: arithmetic right shift preserves the sign bit

logic [7:0] x = <some 8-bit constant>;
// replicate the behavior of y = x >>> 3
assign y =

YA/ UNIVERSITY of WASHINGTON

L02: System Verilog and FSM Review

“Looping”

\/
0‘0

Code is compiled to hardware, so no execution

EE/CSE371, Spring 2025

= “Loops” must be statically unrolled into multiple statements

" |Loops are just for convenience in code writing

repeat (#) <statement(s)>
= Makes # copies of statement(s)

for (1=0; 1i<#; 1i++) <statement(s)>
= Makes # copies of statement(s) that vary based on 1

generate (see reference docs)
= More “powerful” for-loop typically used for:

1)
2)
3)

Module instantiation
Changing the structure of parameterized modules
Functional and formal verification using assertions

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Modules

+» “Black boxes” that we define and instantiate that
form the basic building blocks of our design hierarchy

" Ports form the connections between a module and its
environment

- Ports have directionality (input, output, inout), which can be
declared within the module or within the port list

module tristate(out, in, enable);
input logic in, enable;

output tri out; —D;_

assign out = enable ? in : 'Z;
endmodule

module tristate(output tri out,
input logic 1in,
input logic enable);
assign out = enable ? in : 'Z;
endmodule

10

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Module Instantiation

+» Name an instance and define its port connections

= <type> <name> (<port connections>);

« Assume we have: |logic 1in, enable; tri out;

1) Positional connections:

// must follow defined port ordering
// signal names can be anything
tristate my_tri(out, in, enable);

2) Named/explicit connections:

// any ordering & names allowed
tristate my_tri(.out(out), .in(in), .enable(enable));

3) .name implicit connection:

// signal and port names must match exactly
tristate my_tri(.out, .in, .enable);

11

YA UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

Parameters

+» A parameter is a named constant
= Typically used for widths and timing

EE/CSE371, Spring 2025

parameter N = 8;
parameter period = 100;

// bus width
// timing constant

+» A parameterized module:

" module <name> #(<parameter list>) (<port list>);

= Parameters should be given dwes

- e.g., #(parameter N = 8)

<« Extra exercises:

= Define a parameterized tristate (tristate buffer)
= Define a parameterized multibitAND

12

L02: System Verilog and FSM Review EE/CSE371, Spring 2025

YA/ UNIVERSITY of WASHINGTON

Lab 1 Notes

+» Read the spec carefully!

" For scenarios that are not described,
it’s up for you to define; describe and

defend your decisions in your report %Z: _ (Wter
= Alsoread 371_Assignments.pdf |
« Plan and design before you start =
coding!

+» Test your code in small pieces as you go

= |Lab report due before your demo
= Short sessions (3 min) on LabsLand

13

YA UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

Lecture 1 Review

+» Useful operators:

= Ternary operator: <cond> ? <then> : <else>
" Concatenation: {sig, .., sig}

= Replication: {n{m}}

+» A parameter is a named constant

parameter N = 8; // bus width
parameter period = 100; // timing constant

+» A parameterized module:

" module <name> #(<parameter list>) (<port list>);

= Parameters can be given default values
- e.g., #(parameter N = 8)

EE/CSE371, Spring 2025

14

YA/ UNIVERSITY of WASHINGTON

L02: System Verilog and FSM Review

>>

Q‘QO — 00... QI0T

Review Question oS el

I —» ||

% There are two forms of bit extensions: zero-extension
(add 0s) and sign-extension (copy MSB)

+» Write out SystemVerilog pseudocode for a
parameterized extender module
" Inputs sign (1 bit), in (M bits); output out (N bits > M)

= out should either be the sign-extended version of in
(sign = 1) or the zero-extended version of in (sign =0)

15

EE/CSE371, Spring 2025

YA UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

Review Question (Possible) Solution

EE/CSE371, Spring 2025

module extender ﬁ(parameter M =4, N= 85
D (output [N-1:0] out,

input -1: in, cef
input sign);
1 |th</¢_3 ign); 0y

— |
endmodule O~ //

assign out = sign ? {{(N—M){in[M—ll};},in} : {{(N-M){1'b0}},in};

o
Vv

1
COVES -

o000

(o)

out

16

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Structural vs. Behavioral Revisited

+» Not a strict definition of these terms, so exact
classification is not that important

« Structural:

" |nstantiating modules (library and user-defined) and
defining port connections

" assign: continuous assignment
-« Used with nets

17

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Verilog Procedural Blocks

g"—

+» A procedural block is made up of behavioral code in

the form of procedural statements whose effects are
interpreted sequentially

* The block itself is awakened/triggered in a non-sequential
manner

» 1nitial: block triggered once at time zero

= Non-synthesizable (i.e., for simulation/testbenches only)

2 alwa.ys: block triggered by a sensitivity list

= Any object that is assigned a value in an always statement
must be declared as a variable (e.g., Logic or reg).

18

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

SystemVerilog Procedural Blocks =" -7

+» SystemVerilog introduced variants on always that are
generally more robust and more specialized

+ always_comb: intended for combinational logic
= Sensitivity list is automatically built

+ always_Llatch: intended for latch-based logic

= Sensitivity list is automatically built i
y y ND/
+» always_TT: intended for sequential logic

i.e., synchronous/clocked
(Yy /) " I-/")

= Sensitivity list must be specified

-,

19

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

dk,__/———F 1

Latch vs. Flip-Flop \;}cki, LT LU

+ Both are bistable multivibrators (2 stable states) that
can store information

+ A latch is asynchronous; a flip-flop is edge-triggered

/\
module my_latch(input Tlogic clk,
input logic [3:0] d,
output logic [3:0] q); q[0]$latch
= — DATAIN
always_latch » —|LATCH_ENABLE OUTO—
if (clk) q <= d; e
endmodule HATER
module my_ff(input Tlogic clk,

input logic [3:0] d,

ql0]~reg[3.0] output logic [3:0] q);

—D
-~ ak Q « alwayi:fg.@(posedge clk)
4h9$CLR g 5= e
endmodule

20

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Inferred Latches

+» Warning: easy to write code with inadvertent latches
" Check your synthesis output for “Inferred latch”

= Usually from incomplete assignments — unspecified branch
infers latch behavior

+» Question: which of the following will synthesize and,
if so, what will the hardware look like?

always_latch ~—> always_comb
latch if (clk) q <= d; if) q = d;

|_—7

always_latch always_comb /

if (clk) ¢
else q

cla
" Demo: Tools — “Netlist Viewers” — “RTL Viewer”

! O
O we

21

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

case Statement

module seven_seg(bcd, segs);

« Create combinational

. . . i t logi 3:0] bcd;
logic and is easier to read e T s
than lots of i f/else always. comb
statements case (bcd)

// abc_defg

" Must always be inside an O 2222 - ;:Egéé—éﬂéf
. - - ’
always block 2: segs = 7'bl101_1011;
. . 3: segs = 7'b1060_1111;
= Each case has an implied 4 Segs - 7'b110_0110;
C_Sty|e break 5: segs = 7'b110_1101;
6: segs = 7'bl111_1101;
7: segs = 7'b000_0111;
8: segs = 7'b111_1111;
9: segs = 7'b110_1111;
endcase

endmodule

22

YA/ UNIVERSITY of WASHINGTON

case Statement

+ Create combinational
logic and is easier to read
than lots of 1 f/else
statements

= Must always be inside an
always block

= Each case has an implied
C-style break

= Remember to use defau'lt
to avoid incomplete
assignments!

L02: System Verilog and FSM Review

EE/CSE371, Spring 2025

module seven_seg(bcd, segs);

input logic [3:0] bcd;
output logic [6:0] segs;

always_comb
case (bcd)
//
: segs
: segs
: segs
: segs
: segs
: segs
: segs
: segs
: segs
9: segs

o

co~NOOULhWNR

— default:
——

endcase

endmodule

abc_defg
7'bO11_1111;
7'b000O_0110;
7'bl101_1011;
7'bl00_1111;
7'bl110_0110;
7'b110_1101;
7'bl11_1101;
7'b00O_0111;
7'bl11_1111;
7'bl110_1111;
segs = 7'bX;

23

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Other SystemVerilog Resources

% SystemVerilog Language Reference Manual

= On website, Verilog = Reference Manual
= 586 pages...

+ SystemVerilog articles

= https://www.systemverilog.io/

= http://www.verilogpro.com/

" https://www.chipverify.com/systemverilog/systemverilog-
tutorial

% One style guide for SystemVerilog

= https://www.systemverilog.io/styleguide

= We won’t enforce, but good guidelines
24

http://www.verilogpro.com/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.systemverilog.io/styleguide

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Technology
Break

25

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Lecture Outline

+» SystemVerilog Review & Tips (Cont.)
+ Finite State Machine Design
+ Test Benches

26

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Finite State Machines (FSMs)

+ A convenient way to conceptualize computation over
time using a state transition diagram

= Consists of a set of states, an initial state, and a transition
function

+» FSM implementations
come in 3 blocks:
= State register (‘Si_)
= Next state logic (CL)
= Qutput logic (CL)

27

EE/CSE371, Spring 2025

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

FSM Implementation Notes

+ States must be assignhed a binary encoding

" More readable by using parameters or an enum
®= Encoding choices can affect logic simplification

+ Reset signal can be synchronous (responds to clk) or

asynchronous (responds to reset)
= Determined by whether or not reset is in sensitivity list

+ State logic (next state logic + state update) can be
written as 1 combined block or 2 separate blocks

+ If input is asynchronous, may want to add a two-flip-
flop synchronizer to deal with metastability

28

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

FSM SystemVerilog Design Pattern

« Which, if any, construct(s) would you expect to use
for each of the following basic sections of a module
that implements an FSM?

epor _ | .

wx " // define states and state variables
[obkl initial assign always_comb always_ff None
(L " // next state logic (ns)

initial assign always_comb always_ff None

S —

cL " // output logic

initial assign always_comb always_ff None

e —d

sL-® // state update logic (ps)
initial assign always_comb q}ways_ff None

29

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

FSM Example: String Manipulator

+» Takes in a stream of inputs and removes the second 1
from every consecutive string of 1’s.

Arrows
indicate

mput/output next State

ool

Circles
represent
the states

Example of a Mealy machine

\

= Exampleinputs: 0 1 0 1@®0 1 ®101 111
outputs: © (o | L 5| o

!

30

YA UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

String Manipulator

FSM

module fsm (input logic clk,
output logic out);

// present and next state

// next state logic
always_comb

case (ps)
SO: if (in) ns = S1;
T else ns = SO;
S1: if (in) ns = S3;
else ns = SO;
S3: if (in) ns = S3;
else ns = SO;
endcase

// output logic

enum logic [1:0] {So, S1, S3} ps, ns;

assign out = in & (ps[1] | ~ps[0]);

. \
reset, 1n,

EE/CSE371, Spring 2025

// sequential logic (DFFs)
// synchronous reset
always_ff @(posedge clk)

if (reset)

ps <= S0; // reset state
else

ps <= ns;

endmodule // fsm

31

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Moore vs. Mealy

+» Moore machines define their outputs based on states

() and Mealy machines define outputs based on
transitions (_%L,)

= Mealy machines are more flexible

- Moore outputs are function of state; Mealy outputs are function of
state and inputs

= All FSMs can be expressed in either form, but some systems
are more naturally expressed one way versus the other
- Feel free to use either in this class if not specified
- However, there are implementation differences!

32

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Mealy < Moore Conversions [Not estable)

material

+» Moore — Mealy: copy the state output to every
transition entering the state

» Example: FSM for a turnstile, which is locked until
someone swipes their Husky ID (input H) and then
locks once you push through (input P) the unlocked
gate. Outputs a light that glows red (0) or green (1).

Meal VE

Ap /HL
o ~ /\) ?/A
Locked - lockel
@) @B A e
H?C/ S~ ~

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Not testable
material

Mealy <& Moore Conversions

+» Mealy = Moore: more complicated process; if
incoming transitions differ in output, may need to
“split” the state

k3 Example: the threeOnes FSM from Lecture 1

C .m .

(ﬁg.;\ P
p@&y@ @

34

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Moore vs. Mealy Outputs

. Compare a Moore and Mealy FSM for the turnstile. Complete
the statements and waveform below, assuming no delays:

Moore:

HP HP
Reset/\/\. @D?
A

=

assign out_moore = (Ps == (\);
assign =

HP/O HP 1
e olex
HP/O

HP/O

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Moore vs. Mealy Outputs

—
< L]
’0’ IVI OO re . inputS—b) :
combinational
’ logic for
[» next state d e logic for[™ tout
> > e *| outputs [OUtPULS
. > > —

state feedback

= Qutputs change synchronously with state changes

) [] — . »
» Mealy: ows logic for . N
, outputs . w__e on odd Cegister 1o
———| combinational > — synchvontze 0"“"?*“' <l"€-r\3€j

—— | logicfor |—»|l€9
| nextstate |, Aﬂ

state feedback

" |Input changes can cause immediate output changes ("ﬂ‘“ ﬂ‘.:"“)

Sooner n
P\Oore OJC" P\;{s

36

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Lecture Outline

+» SystemVerilog Review & Tips (Cont.)
+ Finite State Machine Design
+» Test Benches

37

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Test Benches

+» Special modules needed for simulation only!

= Software constraint to mimic hardware

+» ModelSim runs entirely on your computer

" Tries to simulate your FPGA environment without actually
using hardware — no physical signals available

" Must create fake inputs for FPGA’s physical connections
- e.qg., LEDR, HEX, KEY, SW, CLOCK_50
" Unnecessary when code is loaded onto FPGA

+» Need to define both input signal combinations as well
as their timing

38

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Test Bench Timing Controls

Delay: #<time> * 28

= Delays by a specific amount of simulation time

J
*

J
*

» Edge-sensitive: @(<pos/neg>edge <signal>)

= Delays next statement until specified transition on signal

J
*

» Level-sensitive Event: wait(<expression>)

" Waits until <expression> evaluates to TRUE

o
%

» Stop simulation: $Sstop;

«» Timescale: ‘timescale <time unit> / <precision>

L)

" e.g., timescale 1 ns / 1 ps

39

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Test Bench Timing Controls

R/
*

Delay: #<time> #)0 1 Cpernd/ 2)

= Delays by a specific amount of simulation time

Cpos <
» Edge-sensitive: @(<pos/ne@g>Pe é“é" %\'s)lgna1>)

= Delays next statement until specified transition on signal

.) wWa 't (c\k)
» Level-sensitive Event: wait(<expression>)

" Waits until <expression> evaluates to TRUE

R/
*

R/
*

o
%

» Stop simulation: $stop;
%ch orblmny simdatin kme Ung (#1)

«» Timescale: ‘timescale <time’unit> / <precision>

L)

= e.g., timescale 1 ns / 1 ps t“"’""“’lﬂ

40

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Extender Test Bench

“timescale 1 ns / 1 ns Example of testbench
module extender_tb(); that iterates through
different inputs to test. .
parameter M = 4, N = 8; This code produces !'\SB‘SGM sian
'Log'ic [M-1:0] An; different MSBs and sign \ 9
10g‘i c [N-1:0] out: bits. This module only
logic sign; ’ has a few cases so you i= 0bO..O VO
¢ only need a small - o bOm() o |
. number of test cases to
extender #(M, N) dut (.x); gt O)io % ll (\)
. o O..
_!nJF -I ’ . exponen"'rar\': on C?.t) b
initial begin
for (i = 0; 1 < 2%x2; 1i++) begin
sign = i[0]; in = {i[1], {(M-1){1'b0O}}}; #10;
end // for [miwee pemik _ i
$stop; _m

e
end // initial 5'9" I
10000 | 1000
endmodule // extel :'Oout 00000000 100000000 I 100001000 [11111000

Cursor 1

41

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

FSM Test Bench Notes

+» Your main goal is to test every transition that we care
about — may take extra clock cycles

+» For simulation, you need to generate a clock signal

= Assume we have parameter clock_period;

Explicit | initial You can reuse
. clk = 0O: clock code
Edges' g from prior
projects in
always_comb begin 271/369

#(clock_period/2) clk <= 1;
#(clock_period/2) clk <= 0;
end

Toggle: | initial begin

clk <= 0;

forever #(clock_period/2) clk <= ~clk;
end

42

YA/ UNIVERSITY of WASHINGTON

L02: System Verilog and FSM Review

String Manipulator Test Bench

module fsm_tb();

logic clk,
fsm dut (.*);

// simulated clock
parameter period =
initial begin

100;

clk <= 0;

forever
#(period/2)
clk <= ~clk;

end // initial clock

reset, in, out;

EE/CSE371, Spring 2025

St 7\&.\ e
O e OL;“ f&;“it‘é s
initial begin e ral uav-cs
reset <= 1; in <= 0; @ sedge clk);
reset <= 0; in <= 0; @(posedge clk) ;
in <= 0; @(posedge clk);
All the in <= 1; @(posedge clk);
transitions we in <= 0; @(posedge clk);
vt i <= 13 e(posedge cLi);
are repeated in <= 1; @(posedge clk);
but this makes 1N <= 0; @(posedge clk);
it easy to in <= 1; @(posedge clk);
folowthe FsSM in <= 1; @(posedge clk);
in <= 1; @(posedge clk);
@(posedge clk);
$Sstop; // end simulation

end // initial signals

endmodule // fsm_tb

43

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

String Manipulator Waveforms

£&| Wave - Default

g_u_ NN N
o [L

SO 's1 [sa |s1 [s3 [so |s1 J

|I—ll—ll—ll—ll—ll—l

SO o1 S0 |S1 |S3 |SO0 |S1] |S3 |

ursor 1

One way to show your

implementation works is (.ydt olde 3 53 C dc 6 q

to show timing diagrams cyele 10, U

and highlight the

transitions. You can do Reset’_‘ @Dl/l You can justify the test cases
this in whatever way is cyele O you pick and outputs that
reasonable but here’s an u, de d show this convincingly in
example showing clock Cyc\e. ff your lab report

cycles and when it goes

to each state 44

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Checking Responses

+ Visually checking simulated waveforms quickly
becomes impractical for large designs simulated over
thousands of clock cycles

= Displaying and explaining your waveforms for labs can be
tedious

+» There are simulator-independent system tasks to
write messages to the user/tester!

" Look similarto printf() in Cé/é7<\

- $<system_task>(<format_string>, <sig_1>, <sig_2>, ..)

= Will look at $display today and others later on

45

YA UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review

Checking Responses: Sdisplay

L)

format string and adds a new line:

EE/CSE371, Spring 2025

For when printing outputs is
easier than a waveform like
above. Just remember this
will display whenever it is
encountered

+ Triggers once when encountered, prints the given

// define test inputs
int 1;
initial begin
for (i = 0; 1 < 2%%x2; 1i++) begin

sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;

$d1sp1ay(" x 0’@t, mb 6s” %b",
;xEE;Q $t1me, “in, s1gn ? "—4->" : "-@-3" out);
end // for
vstop; s: t
end // initial v:,.ua“;',’ﬁr"?_m_\ ““\ﬁ/ Jﬁ
t = 10, U 00 —-0-> 00000000
t = 20, 0000 —-+4-> 00000000
t = 30, 1000 -0-> 00001000
t = 40, 1000 —-+4+-> 11111000

46

YA/ UNIVERSITY of WASHINGTON L02: System Verilog and FSM Review EE/CSE371, Spring 2025

Format Specifiers

\ escape choracter

Table 5.7: Format Specifiers. Table 5.8: Special characters.
Specifier | Meaning Symbol | Meaning
%h Hexadecimal format \n New line
%d Decimal format (signed.) \t Tab
%0 Octal format \\ \character
%b Binary format \” ” character
%cC ASCII character format \Xyz Where xyz is are octal digits
%ov Net signalstrength - the character given by that octal code
%m Hierarchical name of current scope %% % character
%os String
%ot Time
%e Real in exponential format
%f Real in decimal format
% Real in exponential or decimal format

7

= Warning: these differ from the specifiers for printf

" The minimum field width is specified by numbers between
the ‘%’ and specifier letter

- e.g., %3d will pad out to 3 digits if necessary,

%0d will show just the minimum number of digits needed
47

