
EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Design of Digital
Circuits and Systems
SystemVerilog Review & Tips
Instructor: Vikram Iyer

Teaching Assistants:
Ariel Kao Josh Wentzien
Selim Saridede Jared Yoder
Derek Thorp

Adapted from material by Justin Hisa

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Relevant Course Information

v hw1 due on Monday (4/7)
§ Homework can be completed in groups of up to 4

v Lab 1 report due Friday (4/11)
§ Labs can be completed in groups of up to 2

v Lab demos:
§ Lab demo sign up sheet sent out soon (check with partner)
§ 15 minutes for demos, early labs will be quicker
§ Make sure LabsLand is set up and synthesized beforehand

v Quiz 1 is Thursday, April 4 in last 25 min of lecture
§ Draw FSM state diagram & make design decisions

2

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Lecture Outline

v SystemVerilog Review & Tips (Cont.)
v FSMs
v Test Benches

3

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Review: Integers in Computing

v Unsigned integers follow the standard base 2 system
§ b!b"b#b$b%b&b'b(= b!2! + b"2" +⋯+ b'2' + b(2(

§ In 𝑛 bits, represent integers 0 to 2) − 1

v Signed integers use Two’s Complement representa0on
§ b*+' has weight −2*+', other bits have usual weights +2,

§ In 𝑛 bits, represent integers −2)+' to 2)+' − 1
§ Most significant bit acts as a sign bit (0 = pos, 1 = neg)
§ Handy negaOon procedure: take the bitwise complement

and then add one (~x + 1 == -x)

v ⚠ The choice affects the behavior of operaJons such
as bit extension, shiLing, and comparisons 4

.	.	. b0bw-1 bw-2

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

271/369 SystemVerilog Refresher

v MulJ-bit constants: <n>'<s>#…#
§ <n> is width (unsized by default)
§ <s> is signed designa3on (omit or ‘s’)
§ is radix/base specifier (decimal by default)
§ All le?ers are case-insensi3ve, _ can be used to add spaces

v Compiler will usually warn you if there is a size mismatch
§ Can “cast” using #'(<sig>) syntax

5

Literal Width Base Bits

3'd6 3 10 110

6'o42

8’hAB

Literal Width Base Bits

42

'b101

-3'd5

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Basic Operators

v Possibly new:
§ 371 % 271 → 100
§ 2**3 → 8

6

Type Symbol Description
Arithmetic + addition

- subtraction
* multiplication
/ division
% modulus
** exponentiation

Shift >> logical rightshift
<< logical left shift
>>> arithmetic rightshift
<<< logical left shift

Relational > greater than
< less than
>= greater than or equalto
<= less than or equalto

Equality == equality
!= inequality
=== case equality
!== case inequality

Bitwise ~ bitwise negation
& bitwise and
| bitwise or
^ bitwise xor

Logical ! logical negation
&& logical and
| | logical or

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Ternary Operator

v Conditional assignment
§ select ? <then_expr> : <else_expr>

• If select is true, then evaluates to <then_expr>, otherwise
evaluates to <else_expr>

§ What does this look like in hardware?

v Example: tristate buffer
§ enable ? in : 'bZ

• When enabled, pass the input to the output, otherwise be high
impedance

7

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Bit Manipulation

v Concatenation: {sig, …, sig}
§ Ordering matters; result will have combined widths of all

signals

v Replication operator: {n{m}}
§ repeats value m, n times

v Exercise: arithmetic right shift preserves the sign bit

8

logic [7:0] x = <some 8-bit constant>;
// replicate the behavior of y = x >>> 3
assign y =

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

“Looping”

v Code is compiled to hardware, so no execution
§ “Loops” must be statically unrolled into multiple statements
§ Loops are just for convenience in code writing

v repeat (#) <statement(s)>
§ Makes # copies of statement(s)

v for (i=0; i<#; i++) <statement(s)>
§ Makes # copies of statement(s) that vary based on i

v generate (see reference docs)
§ More “powerful” for-loop typically used for:

1) Module instantiation
2) Changing the structure of parameterized modules
3) Functional and formal verification using assertions

9

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Modules

v “Black boxes” that we define and instantiate that
form the basic building blocks of our design hierarchy
§ Ports form the connections between a module and its

environment
• Ports have directionality (input, output, inout), which can be

declared within the module or within the port list

10

module tristate(out, in, enable);
 input logic in, enable;
 output tri out;

 assign out = enable ? in : 'Z;
endmodule

module tristate(output tri out,
 input logic in,
 input logic enable);
 assign out = enable ? in : 'Z;
endmodule

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Module Instantiation

v Name an instance and define its port connections
§ <type> <name> (<port connections>);

v Assume we have:
1) Positional connections:

2) Named/explicit connections:

3) .name implicit connection:

11

logic in, enable; tri out;

// must follow defined port ordering
// signal names can be anything
tristate my_tri(out, in, enable);

// any ordering & names allowed
tristate my_tri(.out(out), .in(in), .enable(enable));

// signal and port names must match exactly
tristate my_tri(.out, .in, .enable);

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Parameters

v A parameter is a named constant
§ Typically used for widths and timing

v A parameterized module:
§ module <name> #(<parameter list>) (<port list>);

§ Parameters should be given default values
• e.g., #(parameter N = 8)

v Extra exercises:
§ Define a parameterized tristate (tristate buffer)
§ Define a parameterized multibitAND

12

parameter N = 8; // bus width
parameter period = 100; // timing constant

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Lab 1 Notes

v Read the spec carefully!
§ For scenarios that are not described,

it’s up for you to define; describe and
defend your decisions in your report

§ Also read 371_Assignments.pdf

v Plan and design before you start
coding!

v Test your code in small pieces as you go
§ Lab report due before your demo
§ Short sessions (3 min) on LabsLand

13

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Lecture 1 Review

v Useful operators:
§ Ternary operator: <cond> ? <then> : <else>
§ Concatenation: {sig, …, sig}
§ Replication: {n{m}}

v A parameter is a named constant

v A parameterized module:
§ module <name> #(<parameter list>) (<port list>);
§ Parameters can be given default values

• e.g., #(parameter N = 8)
14

parameter N = 8; // bus width
parameter period = 100; // timing constant

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Review Question

v There are two forms of bit extensions: zero-extension
(add 0s) and sign-extension (copy MSB)

v Write out SystemVerilog pseudocode for a
parameterized extender module
§ Inputs sign (1 bit), in (𝑀 bits); output out (𝑁 bits > 𝑀)
§ out should either be the sign-extended version of in

(sign = 1) or the zero-extended version of in (sign = 0)

15

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Review Question (Possible) Solution

v Hardware if 𝑀 = 4 and 𝑁 = 8:

16

module extender #(parameter M = 4, N = 8)
 (output [N-1:0] out,
 input [M-1:0] in,
 input sign);

 assign out = sign ? {{(N-M){in[M-1]}},in} : {{(N-M){1'b0}},in};

endmodule

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Structural vs. Behavioral Revisited

v Not a strict definition of these terms, so exact
classification is not that important

v Structural:
§ Instantiating modules (library and user-defined) and

defining port connections
§ assign: continuous assignment

• Used with nets

17

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Verilog Procedural Blocks

v A procedural block is made up of behavioral code in
the form of procedural statements whose effects are
interpreted sequentially
§ The block itself is awakened/triggered in a non-sequential

manner

v initial: block triggered once at time zero
§ Non-synthesizable (i.e., for simulation/testbenches only)

v always: block triggered by a sensitivity list
§ Any object that is assigned a value in an always statement

must be declared as a variable (e.g., logic or reg).

18

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

SystemVerilog Procedural Blocks

v SystemVerilog introduced variants on always that are
generally more robust and more specialized

v always_comb: intended for combinational logic
§ Sensitivity list is automatically built

v always_latch: intended for latch-based logic
§ Sensitivity list is automatically built

v always_ff: intended for sequential logic
(i.e., synchronous/clocked)
§ Sensitivity list must be specified

19

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Latch vs. Flip-Flop

v Both are bistable multivibrators (2 stable states) that
can store information

v A latch is asynchronous; a flip-flop is edge-triggered

20

module my_latch(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_latch
 if (clk) q <= d;

endmodule

module my_ff(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_ff @(posedge clk)
 q <= d;

endmodule

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Inferred Latches

v Warning: easy to write code with inadvertent latches
§ Check your synthesis output for “Inferred latch”
§ Usually from incomplete assignments – unspecified branch

infers latch behavior

v Question: which of the following will synthesize and,
if so, what will the hardware look like?

§ Demo: Tools → “Netlist Viewers” → “RTL Viewer”
21

always_latch
 if (clk) q <= d;

always_comb
 if (clk) q = d;

always_latch
 if (clk) q <= d;
 else q <= ~d;

always_comb
 if (clk) q = d;
 else q = ~d;

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

case Statement

v Create combinational
logic and is easier to read
than lots of if/else
statements
§ Must always be inside an
always block

§ Each case has an implied
C-style break

22

module seven_seg(bcd, segs);

 input logic [3:0] bcd;
 output logic [6:0] segs;

 always_comb
 case (bcd)
 // abc_defg
 0: segs = 7'b011_1111;
 1: segs = 7'b000_0110;
 2: segs = 7'b101_1011;
 3: segs = 7'b100_1111;
 4: segs = 7'b110_0110;
 5: segs = 7'b110_1101;
 6: segs = 7'b111_1101;
 7: segs = 7'b000_0111;
 8: segs = 7'b111_1111;
 9: segs = 7'b110_1111;
 default: segs = 7’bX;
 endcase

endmodule

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

case Statement

v Create combinational
logic and is easier to read
than lots of if/else
statements
§ Must always be inside an
always block

§ Each case has an implied
C-style break

§ Remember to use default
to avoid incomplete
assignments!

23

module seven_seg(bcd, segs);

 input logic [3:0] bcd;
 output logic [6:0] segs;

 always_comb
 case (bcd)
 // abc_defg
 0: segs = 7'b011_1111;
 1: segs = 7'b000_0110;
 2: segs = 7'b101_1011;
 3: segs = 7'b100_1111;
 4: segs = 7'b110_0110;
 5: segs = 7'b110_1101;
 6: segs = 7'b111_1101;
 7: segs = 7'b000_0111;
 8: segs = 7'b111_1111;
 9: segs = 7'b110_1111;
 default: segs = 7'bX;
 endcase

endmodule

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Other SystemVerilog Resources

v SystemVerilog Language Reference Manual
§ On website, Verilog → Reference Manual
§ 586 pages…

v SystemVerilog articles
§ https://www.systemverilog.io/
§ http://www.verilogpro.com/
§ https://www.chipverify.com/systemverilog/systemverilog-

tutorial

v One style guide for SystemVerilog
§ https://www.systemverilog.io/styleguide
§ We won’t enforce, but good guidelines

24

http://www.verilogpro.com/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.systemverilog.io/styleguide

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Technology
Break

25

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Lecture Outline

v SystemVerilog Review & Tips (Cont.)
v Finite State Machine Design
v Test Benches

26

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Finite State Machines (FSMs)

v A convenient way to conceptualize computation over
time using a state transition diagram
§ Consists of a set of states, an initial state, and a transition

function

v FSM implementations
come in 3 blocks:
§ State register (SL)
§ Next state logic (CL)
§ Output logic (CL)

27

. . .

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

FSM Implementation Notes

v States must be assigned a binary encoding
§ More readable by using parameters or an enum
§ Encoding choices can affect logic simplification

v Reset signal can be synchronous (responds to clk) or
asynchronous (responds to reset)
§ Determined by whether or not reset is in sensitivity list

v State logic (next state logic + state update) can be
written as 1 combined block or 2 separate blocks

v If input is asynchronous, may want to add a two-flip-
flop synchronizer to deal with metastability

28

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

FSM SystemVerilog Design Pattern

v Which, if any, construct(s) would you expect to use
for each of the following basic sections of a module
that implements an FSM?

§ // define states and state variables
initial assign always_comb always_ff None

§ // next state logic (ns)
initial assign always_comb always_ff None

§ // output logic
initial assign always_comb always_ff None

§ // state update logic (ps)
initial assign always_comb always_ff None

29

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

FSM Example: String Manipulator

v Takes in a stream of inputs and removes the second 1
from every consecutive string of 1’s.

§ Example inputs: 0 1 0 1 1 0 1 1 1 0 1 1 1 1 …
 outputs:

30

00 01
1/1

0/0

1/1

0/0

0/0
Reset 11

1/0
input/output

Arrows
indicate
next state

Circles
represent
the states

Example of a Mealy machine

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

String Manipulator FSM

31

module fsm (input logic clk, reset, in,
 output logic out);

 // present and next state
 enum logic [1:0] {S0, S1, S3} ps, ns;

 // next state logic
 always_comb
 case (ps)
 S0: if (in) ns = S1;
 else ns = S0;
 S1: if (in) ns = S3;
 else ns = S0;
 S3: if (in) ns = S3;
 else ns = S0;
 endcase

 // output logic
 assign out = in & (ps[1] | ~ps[0]);

 ...

...

 // sequential logic (DFFs)
 // synchronous reset
 always_ff @(posedge clk)
 if (reset)
 ps <= S0; // reset state
 else
 ps <= ns;

endmodule // fsm

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Moore vs. Mealy

v Moore machines define their outputs based on states
() and Mealy machines define outputs based on
transitions ()
§ Mealy machines are more flexible

• Moore outputs are function of state; Mealy outputs are function of
state and inputs

§ All FSMs can be expressed in either form, but some systems
are more naturally expressed one way versus the other
• Feel free to use either in this class if not specified
• However, there are implementation differences!

32

0/1

00/1

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Mealy ↔ Moore Conversions

v Moore → Mealy: copy the state output to every
transition entering the state

v Example: FSM for a turnstile, which is locked until
someone swipes their Husky ID (input H) and then
locks once you push through (input P) the unlocked
gate. Outputs a light that glows red (0) or green (1).

33

Locked
0/0

Unlocked
1/1

H"P

"HP

"P

"HP

"H"P

Reset

Not testable
material

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Mealy ↔ Moore Conversions

v Mealy → Moore: more complicated process; if
incoming transitions differ in output, may need to
“split” the state

v Example: the threeOnes FSM from Lecture 1

34

00 01 10

1/0

0/0

1/0

0/0

0/0 1/1

Not testable
material

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Moore vs. Mealy Outputs
v Compare a Moore and Mealy FSM for the turnstile. Complete

the statements and waveform below, assuming no delays:

35

L
0/0

U
1/1

H"P

"HP

"P

"HP

"H"P

Reset

L
0

U
1

H"P/1

"HP/0

"P/1

"HP/0

"H"P/0

Reset

Mealy:

Moore: assign out_moore =
assign out_mealy =

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Moore vs. Mealy Outputs

v Moore:

§ Outputs change synchronously with state changes

v Mealy:

§ Input changes can cause immediate output changes

36

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Lecture Outline

v SystemVerilog Review & Tips (Cont.)
v Finite State Machine Design
v Test Benches

37

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Test Benches

v Special modules needed for simulation only!
§ Software constraint to mimic hardware

v ModelSim runs entirely on your computer
§ Tries to simulate your FPGA environment without actually

using hardware – no physical signals available
§ Must create fake inputs for FPGA’s physical connections

• e.g., LEDR, HEX, KEY, SW, CLOCK_50

§ Unnecessary when code is loaded onto FPGA

v Need to define both input signal combinations as well
as their timing

38

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Test Bench Timing Controls

v Delay: #<time>
§ Delays by a specific amount of simulation time

v Edge-sensitive: @(<pos/neg>edge <signal>)
§ Delays next statement until specified transition on signal

v Level-sensitive Event: wait(<expression>)
§ Waits until <expression> evaluates to TRUE

v Stop simulation: $stop;

v Timescale: `timescale <time unit> / <precision>
§ e.g., `timescale 1 ns / 1 ps

39

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Test Bench Timing Controls

v Delay: #<time>
§ Delays by a specific amount of simulation time

v Edge-sensitive: @(<pos/neg>edge <signal>)
§ Delays next statement until specified transition on signal

v Level-sensitive Event: wait(<expression>)
§ Waits until <expression> evaluates to TRUE

v Stop simulation: $stop;

v Timescale: `timescale <time unit> / <precision>
§ e.g., `timescale 1 ns / 1 ps

40

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Extender Test Bench

41

`timescale 1 ns / 1 ns
module extender_tb();

 parameter M = 4, N = 8;
 logic [M-1:0] in;
 logic [N-1:0] out;
 logic sign;

 extender #(M, N) dut (.*);

 int i;
 initial begin
 for (i = 0; i < 2**2; i++) begin
 sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;
 end // for
 $stop;
 end // initial

endmodule // extender_tb

Example of testbench
that iterates through
different inputs to test.
This code produces
different MSBs and sign
bits. This module only
has a few cases so you
only need a small
number of test cases to
show it works

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

FSM Test Bench Notes

v Your main goal is to test every transition that we care
about – may take extra clock cycles

v For simulation, you need to generate a clock signal
§ Assume we have parameter clock_period;

42

Explicit
Edges:

initial
 clk = 0;

always_comb begin
 #(clock_period/2) clk <= 1;
 #(clock_period/2) clk <= 0;
end

Toggle: initial begin
 clk <= 0;
 forever #(clock_period/2) clk <= ~clk;
end

You can reuse
clock code
from prior
projects in
271/369

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

String Manipulator Test Bench

43

module fsm_tb();

 logic clk, reset, in, out;

 fsm dut (.*);

 // simulated clock
 parameter period = 100;
 initial begin
 clk <= 0;
 forever
 #(period/2)
 clk <= ~clk;
 end // initial clock

 ...

...

 initial begin
 reset <= 1; in <= 0; @(posedge clk);
 reset <= 0; in <= 0; @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 1; @(posedge clk);
 @(posedge clk);
 $stop; // end simulation
 end // initial signals

endmodule // fsm_tb

All the
transitions we
want to test,
note that some
are repeated
but this makes
it easy to
follow the FSM

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

String Manipulator Waveforms

44

00 01
1/1

0/0

1/1

0/0

0/0
Reset 11

1/0

One way to show your
implementation works is
to show timing diagrams
and highlight the
transitions. You can do
this in whatever way is
reasonable but here’s an
example showing clock
cycles and when it goes
to each state

You can justify the test cases
you pick and outputs that
show this convincingly in
your lab report

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Checking Responses

v Visually checking simulated waveforms quickly
becomes impractical for large designs simulated over
thousands of clock cycles
§ Displaying and explaining your waveforms for labs can be

tedious

v There are simulator-independent system tasks to
write messages to the user/tester!
§ Look similar to printf() in C

• $<system_task>(<format_string>, <sig_1>, <sig_2>, …)

§ Will look at $display today and others later on

45

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Checking Responses: $display

v Triggers once when encountered, prints the given
format string and adds a new line:

46

// define test inputs
int i;
initial begin
 for (i = 0; i < 2**2; i++) begin
 sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;
 $display("t = %0t, %b %s %b",
 $time, in, sign ? "-+->" : "-0->", out);
 end // for
 $stop;
end // initial

For when printing outputs is
easier than a waveform like
above. Just remember this
will display whenever it is
encountered

EE/CSE371, Spring 2025L02: System Verilog and FSM Review

Format Specifiers

§ Warning: these differ from the specifiers for printf
§ The minimum field width is specified by numbers between

the ‘%’ and specifier letter
• e.g., %3d will pad out to 3 digits if necessary,

e.g., %0d will show just the minimum number of digits needed
47

