
EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Design of Digital
Circuits and Systems
SystemVerilog Review & Tips
Instructor: Vikram Iyer

Teaching Assistants:
Ariel Kao Josh Wentzien
Selim Saridede Jared Yoder
Derek Thorp

Adapted from material by Justin Hisa

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Relevant Course Information

v hw1 due on Monday (4/7)
§ Homework can be completed in groups of up to 4

v Lab 1 report due Friday (4/11)
§ Labs can be completed in groups of up to 2

v Lab demos:
§ Lab demo sign up sheet sent out soon (check with partner)
§ 15 minutes for demos, early labs will be quicker
§ Make sure LabsLand is set up and synthesized beforehand

v Quiz 1 is Thursday, April 4 in last 25 min of lecture
§ Draw FSM state diagram & make design decisions

2

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Lecture Outline

v SystemVerilog Review & Tips (Cont.)
v FSMs
v Test Benches

3

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Review: Integers in Computing

v Unsigned integers follow the standard base 2 system
§ b!b"b#b$b%b&b'b(= b!2! + b"2" +⋯+ b'2' + b(2(

§ In 𝑛 bits, represent integers 0 to 2) − 1

v Signed integers use Two’s Complement representa0on
§ b*+' has weight −2*+', other bits have usual weights +2,

§ In 𝑛 bits, represent integers −2)+' to 2)+' − 1
§ Most significant bit acts as a sign bit (0 = pos, 1 = neg)
§ Handy negaOon procedure: take the bitwise complement

and then add one (~x + 1 == -x)

v ⚠ The choice affects the behavior of operaJons such
as bit extension, shiLing, and comparisons 4

.	.	. b0bw-1 bw-2

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

271/369 SystemVerilog Refresher

v MulJ-bit constants: <n>'<s>#…#
§ <n> is width (unsized by default)
§ <s> is signed designa3on (omit or ‘s’)
§ is radix/base specifier (decimal by default)
§ All le?ers are case-insensi3ve, _ can be used to add spaces

v Compiler will usually warn you if there is a size mismatch
§ Can “cast” using #'(<sig>) syntax

5

Literal Width Base Bits

3'd6 3 10 110

6'o42

8’hAB

Literal Width Base Bits

42

'b101

-3'd5

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Basic Operators

v Possibly new:
§ 371 % 271 → 100
§ 2**3 → 8

6

Type Symbol Description
Arithmetic + addition

- subtraction
* multiplication
/ division
% modulus
** exponentiation

Shift >> logical rightshift
<< logical left shift
>>> arithmetic rightshift
<<< logical left shift

Relational > greater than
< less than
>= greater than or equalto
<= less than or equalto

Equality == equality
!= inequality
=== case equality
!== case inequality

Bitwise ~ bitwise negation
& bitwise and
| bitwise or
^ bitwise xor

Logical ! logical negation
&& logical and
| | logical or

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Ternary Operator

v Conditional assignment
§ select ? <then_expr> : <else_expr>

• If select is true, then evaluates to <then_expr>, otherwise
evaluates to <else_expr>

§ What does this look like in hardware?

v Example: tristate buffer
§ enable ? in : 'bZ

• When enabled, pass the input to the output, otherwise be high
impedance

7

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Bit Manipulation

v Concatenation: {sig, …, sig}
§ Ordering matters; result will have combined widths of all

signals

v Replication operator: {n{m}}
§ repeats value m, n times

v Exercise: arithmetic right shift preserves the sign bit

8

logic [7:0] x = <some 8-bit constant>;
// replicate the behavior of y = x >>> 3
assign y =

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

“Looping”

v Code is compiled to hardware, so no execution
§ “Loops” must be statically unrolled into multiple statements
§ Loops are just for convenience in code writing

v repeat (#) <statement(s)>
§ Makes # copies of statement(s)

v for (i=0; i<#; i++) <statement(s)>
§ Makes # copies of statement(s) that vary based on i

v generate (see reference docs)
§ More “powerful” for-loop typically used for:

1) Module instantiation
2) Changing the structure of parameterized modules
3) Functional and formal verification using assertions

9

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Modules

v “Black boxes” that we define and instantiate that
form the basic building blocks of our design hierarchy
§ Ports form the connections between a module and its

environment
• Ports have directionality (input, output, inout), which can be

declared within the module or within the port list

10

module tristate(out, in, enable);
 input logic in, enable;
 output tri out;

 assign out = enable ? in : 'Z;
endmodule

module tristate(output tri out,
 input logic in,
 input logic enable);
 assign out = enable ? in : 'Z;
endmodule

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Module Instantiation

v Name an instance and define its port connections
§ <type> <name> (<port connections>);

v Assume we have:
1) Positional connections:

2) Named/explicit connections:

3) .name implicit connection:

11

logic in, enable; tri out;

// must follow defined port ordering
// signal names can be anything
tristate my_tri(out, in, enable);

// any ordering & names allowed
tristate my_tri(.out(out), .in(in), .enable(enable));

// signal and port names must match exactly
tristate my_tri(.out, .in, .enable);

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Parameters

v A parameter is a named constant
§ Typically used for widths and timing

v A parameterized module:
§ module <name> #(<parameter list>) (<port list>);

§ Parameters should be given default values
• e.g., #(parameter N = 8)

v Extra exercises:
§ Define a parameterized tristate (tristate buffer)
§ Define a parameterized multibitAND

12

parameter N = 8; // bus width
parameter period = 100; // timing constant

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Lab 1 Notes

v Read the spec carefully!
§ For scenarios that are not described,

it’s up for you to define; describe and
defend your decisions in your report

§ Also read 371_Assignments.pdf

v Plan and design before you start
coding!

v Test your code in small pieces as you go
§ Lab report due before your demo
§ Short sessions (3 min) on LabsLand

13

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Lecture 1 Review

v Useful operators:
§ Ternary operator: <cond> ? <then> : <else>
§ Concatenation: {sig, …, sig}
§ Replication: {n{m}}

v A parameter is a named constant

v A parameterized module:
§ module <name> #(<parameter list>) (<port list>);
§ Parameters can be given default values

• e.g., #(parameter N = 8)
14

parameter N = 8; // bus width
parameter period = 100; // timing constant

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Review Question

v There are two forms of bit extensions: zero-extension
(add 0s) and sign-extension (copy MSB)

v Write out SystemVerilog pseudocode for a
parameterized extender module
§ Inputs sign (1 bit), in (𝑀 bits); output out (𝑁 bits > 𝑀)
§ out should either be the sign-extended version of in

(sign = 1) or the zero-extended version of in (sign = 0)

15

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Review Question (Possible) Solution

v Hardware if 𝑀 = 4 and 𝑁 = 8:

16

module extender #(parameter M = 4, N = 8)
 (output [N-1:0] out,
 input [M-1:0] in,
 input sign);

 assign out = sign ? {{(N-M){in[M-1]}},in} : {{(N-M){1'b0}},in};

endmodule

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Structural vs. Behavioral Revisited

v Not a strict definition of these terms, so exact
classification is not that important

v Structural:
§ Instantiating modules (library and user-defined) and

defining port connections
§ assign: continuous assignment

• Used with nets

17

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Verilog Procedural Blocks

v A procedural block is made up of behavioral code in
the form of procedural statements whose effects are
interpreted sequentially
§ The block itself is awakened/triggered in a non-sequential

manner

v initial: block triggered once at time zero
§ Non-synthesizable (i.e., for simulation/testbenches only)

v always: block triggered by a sensitivity list
§ Any object that is assigned a value in an always statement

must be declared as a variable (e.g., logic or reg).

18

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

SystemVerilog Procedural Blocks

v SystemVerilog introduced variants on always that are
generally more robust and more specialized

v always_comb: intended for combinational logic
§ Sensitivity list is automatically built

v always_latch: intended for latch-based logic
§ Sensitivity list is automatically built

v always_ff: intended for sequential logic
(i.e., synchronous/clocked)
§ Sensitivity list must be specified

19

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Latch vs. Flip-Flop

v Both are bistable multivibrators (2 stable states) that
can store information

v A latch is asynchronous; a flip-flop is edge-triggered

20

module my_latch(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_latch
 if (clk) q <= d;

endmodule

module my_ff(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_ff @(posedge clk)
 q <= d;

endmodule

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Inferred Latches

v Warning: easy to write code with inadvertent latches
§ Check your synthesis output for “Inferred latch”
§ Usually from incomplete assignments – unspecified branch

infers latch behavior

v Question: which of the following will synthesize and,
if so, what will the hardware look like?

§ Demo: Tools → “Netlist Viewers” → “RTL Viewer”
21

always_latch
 if (clk) q <= d;

always_comb
 if (clk) q = d;

always_latch
 if (clk) q <= d;
 else q <= ~d;

always_comb
 if (clk) q = d;
 else q = ~d;

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

case Statement

v Create combinational
logic and is easier to read
than lots of if/else
statements
§ Must always be inside an
always block

§ Each case has an implied
C-style break

22

module seven_seg(bcd, segs);

 input logic [3:0] bcd;
 output logic [6:0] segs;

 always_comb
 case (bcd)
 // abc_defg
 0: segs = 7'b011_1111;
 1: segs = 7'b000_0110;
 2: segs = 7'b101_1011;
 3: segs = 7'b100_1111;
 4: segs = 7'b110_0110;
 5: segs = 7'b110_1101;
 6: segs = 7'b111_1101;
 7: segs = 7'b000_0111;
 8: segs = 7'b111_1111;
 9: segs = 7'b110_1111;
 default: segs = 7’bX;
 endcase

endmodule

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

case Statement

v Create combinational
logic and is easier to read
than lots of if/else
statements
§ Must always be inside an
always block

§ Each case has an implied
C-style break

§ Remember to use default
to avoid incomplete
assignments!

23

module seven_seg(bcd, segs);

 input logic [3:0] bcd;
 output logic [6:0] segs;

 always_comb
 case (bcd)
 // abc_defg
 0: segs = 7'b011_1111;
 1: segs = 7'b000_0110;
 2: segs = 7'b101_1011;
 3: segs = 7'b100_1111;
 4: segs = 7'b110_0110;
 5: segs = 7'b110_1101;
 6: segs = 7'b111_1101;
 7: segs = 7'b000_0111;
 8: segs = 7'b111_1111;
 9: segs = 7'b110_1111;
 default: segs = 7'bX;
 endcase

endmodule

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Other SystemVerilog Resources

v SystemVerilog Language Reference Manual
§ On website, Verilog → Reference Manual
§ 586 pages…

v SystemVerilog articles
§ https://www.systemverilog.io/
§ http://www.verilogpro.com/
§ https://www.chipverify.com/systemverilog/systemverilog-

tutorial

v One style guide for SystemVerilog
§ https://www.systemverilog.io/styleguide
§ We won’t enforce, but good guidelines

24

http://www.verilogpro.com/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.systemverilog.io/styleguide

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Technology
Break

25

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Lecture Outline

v SystemVerilog Review & Tips (Cont.)
v Finite State Machine Design
v Test Benches

26

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Finite State Machines (FSMs)

v A convenient way to conceptualize computation over
time using a state transition diagram
§ Consists of a set of states, an initial state, and a transition

function

v FSM implementations
come in 3 blocks:
§ State register (SL)
§ Next state logic (CL)
§ Output logic (CL)

27

. . .

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

FSM Implementation Notes

v States must be assigned a binary encoding
§ More readable by using parameters or an enum
§ Encoding choices can affect logic simplification

v Reset signal can be synchronous (responds to clk) or
asynchronous (responds to reset)
§ Determined by whether or not reset is in sensitivity list

v State logic (next state logic + state update) can be
written as 1 combined block or 2 separate blocks

v If input is asynchronous, may want to add a two-flip-
flop synchronizer to deal with metastability

28

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

FSM SystemVerilog Design Pattern

v Which, if any, construct(s) would you expect to use
for each of the following basic sections of a module
that implements an FSM?

§ // define states and state variables
initial assign always_comb always_ff None

§ // next state logic (ns)
initial assign always_comb always_ff None

§ // output logic
initial assign always_comb always_ff None

§ // state update logic (ps)
initial assign always_comb always_ff None

29

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

FSM Example: String Manipulator

v Takes in a stream of inputs and removes the second 1
from every consecutive string of 1’s.

§ Example inputs: 0 1 0 1 1 0 1 1 1 0 1 1 1 1 …
 outputs:

30

00 01
1/1

0/0

1/1

0/0

0/0
Reset 11

1/0

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

String Manipulator FSM

31

module fsm (input logic clk, reset, in,
 output logic out);

 // present and next state
 enum logic [1:0] {S0, S1, S3} ps, ns;

 // next state logic
 always_comb
 case (ps)
 S0: if (in) ns = S1;
 else ns = S0;
 S1: if (in) ns = S3;
 else ns = S0;
 S3: if (in) ns = S3;
 else ns = S0;
 endcase

 // output logic
 assign out = in & (ps[1] | ~ps[0]);

 ...

...

 // sequential logic (DFFs)
 // synchronous reset
 always_ff @(posedge clk)
 if (reset)
 ps <= S0; // reset state
 else
 ps <= ns;

endmodule // fsm

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Moore vs. Mealy

v Moore machines define their outputs based on states
() and Mealy machines define outputs based on
transitions ()
§ Mealy machines are more flexible

• Moore outputs are function of state; Mealy outputs are function of
state and inputs

§ All FSMs can be expressed in either form, but some systems
are more naturally expressed one way versus the other
• Feel free to use either in this class if not specified
• However, there are implementation differences!

32

0/1

00/1

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Mealy ↔ Moore Conversions

v Moore → Mealy: copy the state output to every
transition entering the state

v Example: FSM for a turnstile, which is locked until
someone swipes their Husky ID (input H) and then
locks once you push through (input P) the unlocked
gate. Outputs a light that glows red (0) or green (1).

33

Locked
0/0

Unlocked
1/1

H"P

"HP

"P

"HP

"H"P

Reset

Not testable
material

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Mealy ↔ Moore Conversions

v Mealy → Moore: more complicated process; if
incoming transitions differ in output, may need to
“split” the state

v Example: the threeOnes FSM from Lecture 1

34

00 01 10

1/0

0/0

1/0

0/0

0/0 1/1

Not testable
material

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Moore vs. Mealy Outputs
v Compare a Moore and Mealy FSM for the turnstile. Complete

the statements and waveform below, assuming no delays:

35

L
0/0

U
1/1

H"P

"HP

"P

"HP

"H"P

Reset

L
0

U
1

H"P/1

"HP/0

"P/1

"HP/0

"H"P/0

Reset

Mealy:

Moore: assign out_moore =
assign out_mealy =

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Moore vs. Mealy Outputs

v Moore:

§ Outputs change synchronously with state changes

v Mealy:

§ Input changes can cause immediate output changes

36

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Lecture Outline

v SystemVerilog Review & Tips (Cont.)
v Finite State Machine Design
v Test Benches

37

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Test Benches

v Special modules needed for simulation only!
§ Software constraint to mimic hardware

v ModelSim runs entirely on your computer
§ Tries to simulate your FPGA environment without actually

using hardware – no physical signals available
§ Must create fake inputs for FPGA’s physical connections

• e.g., LEDR, HEX, KEY, SW, CLOCK_50

§ Unnecessary when code is loaded onto FPGA

v Need to define both input signal combinations as well
as their timing

38

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Test Bench Timing Controls

v Delay: #<time>
§ Delays by a specific amount of simulation time

v Edge-sensitive: @(<pos/neg>edge <signal>)
§ Delays next statement until specified transition on signal

v Level-sensitive Event: wait(<expression>)
§ Waits until <expression> evaluates to TRUE

v Stop simulation: $stop;

v Timescale: `timescale <time unit> / <precision>
§ e.g., `timescale 1 ns / 1 ps

39

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Extender Test Bench

40

`timescale 1 ns / 1 ns
module extender_tb();

 parameter M = 4, N = 8;
 logic [M-1:0] in;
 logic [N-1:0] out;
 logic sign;

 extender #(M, N) dut (.*);

 int i;
 initial begin
 for (i = 0; i < 2**2; i++) begin
 sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;
 end // for
 $stop;
 end // initial

endmodule // extender_tb

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

FSM Test Bench Notes

v Your main goal is to test every transition that we care
about – may take extra clock cycles

v For simulation, you need to generate a clock signal
§ Assume we have parameter clock_period;

41

Explicit
Edges:

initial
 clk = 0;

always_comb begin
 #(clock_period/2) clk <= 1;
 #(clock_period/2) clk <= 0;
end

Toggle: initial begin
 clk <= 0;
 forever #(clock_period/2) clk <= ~clk;
end

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

String Manipulator Test Bench

42

module fsm_tb();

 logic clk, reset, in, out;

 fsm dut (.*);

 // simulated clock
 parameter period = 100;
 initial begin
 clk <= 0;
 forever
 #(period/2)
 clk <= ~clk;
 end // initial clock

 ...

...

 initial begin
 reset <= 1; in <= 0; @(posedge clk);
 reset <= 0; in <= 0; @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 0; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 1; @(posedge clk);
 in <= 1; @(posedge clk);
 @(posedge clk);
 $stop; // end simulation
 end // initial signals

endmodule // fsm_tb

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

String Manipulator Waveforms

43

00 01
1/1

0/0

1/1

0/0

0/0
Reset 11

1/0

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Checking Responses

v Visually checking simulated waveforms quickly
becomes impractical for large designs simulated over
thousands of clock cycles
§ Displaying and explaining your waveforms for labs can be

tedious

v There are simulator-independent system tasks to
write messages to the user/tester!
§ Look similar to printf() in C

• $<system_task>(<format_string>, <sig_1>, <sig_2>, …)

§ Will look at $display today and others later on

44

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Checking Responses: $display

v Triggers once when encountered, prints the given
format string and adds a new line:

45

// define test inputs
int i;
initial begin
 for (i = 0; i < 2**2; i++) begin
 sign = i[0]; in = {i[1], {(M-1){1'b0}}}; #10;
 $display("t = %0t, %b %s %b",
 $time, in, sign ? "-+->" : "-0->", out);
 end // for
 $stop;
end // initial

EE/CSE371, Spring 2025L01: SystemVerilog Review & Tips

Format Specifiers

§ Warning: these differ from the specifiers for printf
§ The minimum field width is specified by numbers between

the ‘%’ and specifier letter
• e.g., %3d will pad out to 3 digits if necessary,

e.g., %0d will show just the minimum number of digits needed
46

