YA UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop
Gayathri Vadhyan Jared Yoder
Lancelot Wathieu Matthew Hung



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Relevant Course Information

% Quiz 4 this Thursday @ 11:40 am

= Algorithms to Hardware

+» Lab 5 report due Friday (5/17)
+» Lab 6 proposal due next week (5/22)

= (1) Describe your major project behavior, features,
components/modules, and user interaction in a few
paragraphs

= (2) Include at least a top-level block diagram (preferably
with signals labeled on it; other diagrams welcome)

" (3) Include images/sketches of VGA output
= “Proposal Workshop” in lecture on 5/21



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Lecture Outline

+» Testbenches (yet again)
+» Assertions
+» Object-Oriented Programming



YA UNIVERSITY of WASHINGTON L15: Advanced Testing |

EE/CSE371, Spring 2024

Testbenches

«» HDL module that tests another module

= Typically called the device under test (dut) or unit under test
(uut)

= No ports (i.e., inputs or outputs)
" Not synthesizable

"= Note: even if written in the same HDL, testbenches may give
different simulation results on different simulators

Testbench

T TR
Stimulus :l[> Device Under —l\ Verity

Verification _l/ Responsg

Figure 8.1: Modular testbench structure.



YA UNIVERSITY of WASHINGTON L15: Advanced Testing |

Test Vectors from a File

EE/CSE371, Spring 2024

«» Can be convenient to load test vectors from a file

" Use $readmemb and $readmemh

" Can also save you recompiling time!

logic [W-1:0] test vectors[0:15];

// define test inputs
integer i;
initial begin
$readmemh("tests.txt", test vectors);

Reset = 1; Start = 0; @(posedge clk);
Reset = 0; @(posedge clk);
for (i = 0; 1 < 2**4; i++) begin

end
@(posedge clk); // extra cycle of output
$stop();

Start = 1; Num = test vectors[i]; @(posedge clk);
Start = 0; @(posedge Ready);




YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Dumping Responses

% The results of a simulation can be “dumped” to a file
for later viewing in a waveform viewer or analysis

= $dumpfile specifies the name of the file
« "dump.vcd" by default (Value Change Dump)
- Found in <Project>\simulation\modelsim
= $dumpvars saves all of the variables from that point onward

to that file
« You can use arguments to specify which variables you want

// define test inputs

integer i;

initial begin
$dumpfile("values.vcd");
$dumpvars;

1; Start = 0; @(posedge clk);
0; @(posedge clk); 6

Reset
Reset




YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

EDA Playground

+» The advanced verification features we will discuss
cannot be run in ModelSim so we will use EDA
Playground instead

= A web application that will let you use more powerful
commercial simulators

" Homework 6 will walk you through the registration process
and a short tutorial

" To use the waveform viewer in EDA playground, you must
generate a .vcd file during your simulation!



EE/CSE371, Spring 2024

YA UNIVERSITY of WASHINGTON L15: Advanced Testing |

Checking Responses (Review)

+ Visually checking simulated waveforms quickly
becomes impractical for large designs simulated over
thousands of clock cycles

= Even for isPrime, we are constantly scanning right for Done,
then scanning up and down for P.

= Displaying and explaining your waveforms for labs has been
tedious for a while now

+» There are simulator-independent system tasks to
write messages to the user/tester!

" Look similarto printf() inC
- $<system_task>(<format _string>, <sig 1>, <sig 2>, ..)



YA UNIVERSITY of WASHINGTON

L15: Advanced Testing |

Format Specifiers (Review)

Table 5.7: Format Specifiers.

EE/CSE371, Spring 2024

Table 5.8: Special characters.

Symbol | Meaning
\n New line
\t Tab
\\ \character
\” ” character
\Xyz Where xyz is are octal digits
- the character given by that octal code
%% % character

Specifier | Meaning

%h Hexadecimal format

%d Decimal format

%0 Octal format

%b Binary format

%oc ASCII character format

%Yov Net signalstrength

%m Hierarchical name of current scope
%S String

%ot Time

%€ Real in exponential format

%f Real in decimal format

%g Real in exponential or decimal format

= Warning: these differ from the specifiers for printf

" The minimum field width is specified by numbers between

the ‘%" and specifier letter

- e.g., %3d will pad out to 3 digits if necessary,
%0d will show just the minimum number of digits needed




YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Checking Responses: $display (Review)

+» Triggers once when encountered, prints the given
format string and adds a new line:

// define test inputs
integer i;
. ey . f 1 Transcript
initial begin
WSIM 4> run -all
Reset = 1; Start = 0; @(posedge clk); $T = 90, isPrime( 0) = No
_ . . # T = 150, isPrime{ 1) = Hc
Reset = 0; @(posedge clk); $ T = 210, isPrime( 2) = Yes
for (1 = 0; 1 < 2**W; i++) begin #T = 270, isPzime( 3) = ¥es
3 $# T = 330, isPrim={ 4) = Hc
Start = 1; Num = i; @(posedge clk); # T = 410, isPrime( 5) = Yes
# T = 470, isPri g) =N
Start = ©; @(posedge Ready); $T = 570, 1:F§122E ?: " s
# T = €30, isPrime{ 2) = Hoc
G n _ 0 G g [ — O # T = 710, isPrime{ %) = Hoc
$display("T = %4t, isPrime(%2d) = %s", B
$tj_me, Num, P ? "Yes" : "No "); # T = 910, isPrime(ll) = Yes
$ T = 4970, isPrim=({l2) = Hc
# T = 1130, isPrime({l3) = Yes
end $# T = 11580, isPrime(l4) = Hc
T = 1270, isPri 15) = N
@(posedge clk); // extra cycle of output ; reRrmells) = A
$stop();
end

10



YA UNIVERSITY of WASHINGTON

Checking Responses: $write

L15: Advanced Testing |

EE/CSE371, Spring 2024

Triggers once when encountered, prints the given
format string without a new line:

// define test inputs
integer i;
initial begin
Reset = 1; Start = 0; @(posedge
Reset = 0; @(posedge
for (1 = 0; 1 < 2**W; i++) begin
Start = 1; Num = i; @(posedge
Start = 0; @(posedge

$write("T = %4t, isPrime(%2d)
$time, Num, P ? "Yes"

end

clk);
clk);

clk);
Ready);

= %s\n",
lINO Il);

@(posedge clk); // extra cycle of output

$stop();
end

Same messages?
f 1 Transcript

VSIM 3> run -all

$ T = 90, isPrime({ 0) = HNo
# T = 150, isPrime{ 1) = Hc
# T = 210, isPrime{ 2) = Yes
# T = 270, isPrime{ 3) = Yes
# T = 330, isPrime{ 4) = Ho
# T = 410, isPrime{ 5) = Yes
$# T = 470, isPrime{ &) = Ho
# T = 570, isPrime({ 7) = Yes
# T = ©30, isPrime{ 2) = Ho
$# T = 710, isPrime{ 9) = HNc
$# T = 770, isPrime({l0) = HNc
# T = 4l0, isPrime(ll) = Yes
# T = 870, isPrime({l2) = Ho
# T = 1130, isPrime(l3) = Yes
# T = 1150, isPrime{l4) = HNc
# T = 1270, isPrime({l5) = Nc

11



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Checking Responses: $monitor

+» Triggers when encountered, then triggers anytime
one of its signal changes (adds a new line):

// define test inputs
: fine P Same messages?
integer 1;
e L e f 1 Transcript
1n1 1a egln VSIM 6> run -all
. " o . . o o " $FT = 0, isPrime{ x) = He
$monitor("T = %4t, isPrime(%2d) = %s\n", £T = 30, isPrime( 0) = He
. n no, n ny . 2T = 70, i8Frime({ Q) = Ho
$t1me, Num) P ? YeS . NO ), §T= §||:|r isPrime{ _'|_:| = No
$# T = 150, isPrime{ 2) = Ho
Reset = 1; Start = 0; @(posedge clk); ST C o omeiee( 3 - v
R t = 9: clk): $ T = 270, isPrime( 4) = Yes
€s€ . ’ . ,@(pOSEdge ), # T = 310, isPrime{ 4) = No
for (i = 0; i < 2**W; i++) begin T = 330, isPrime{ 5) = No
( 5 ; g
_ . _ s . # T = 390, isPrime{ 5) = Yes
Start = 1; Num = i; @(posedge clk); $T = 410, isPrime( €) = Yes
Start = 0; @(posedge Ready); MR St
end 2T = 550: isPrime{ 7) = Yes
#$ T = 570, isPrime({ 2) = Yes
@(posedge clk); // extra cycle of output £ T - 6l0, isPrime( ) = Mo
. $ T = €30, isPrime({ 9) = Nc
$S't0p(), $ T = 710, isPrime(l0) = No
end k T = 770, isPrime(11) = No
# T = 890, isPrime(ll) = Yes
# T = 48ld, isPrime(l2) = Yes
$#T = 950, isPrime(12) = No 45
$ T = 970, isPrime{13) = No




YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Lecture Outline

+» Testbenches (yet again)
+» Assertions
+» Object-Oriented Programming

13



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Assertion-Based Verification

+ $display, $write, $monitor
" Can indicate the response of the circuit in textual form

= Still must be verified manually/visually, even if you also print
the expected response alongside it

+ Assertions are SystemVerilog features that can print
messages when an expected condition fails

" assert —immediate assertion that follows simulation event
semantics

= assert property —concurrent assertion based on clock
semantics

14



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Immediate Assertions

«» An immediate assertion is an if-else statement with a
default-generated else:

assert (P == 1); |<==»|if (P == 1); // nothing 1if true
else $error("Assertion error.");

" Must be contained inside of a procedural block

+» Can also explicitly define pass and fail statements:

// defined pass, default fail
assert (P == 1) $display("%2d is prime", Num);

// default pass (nothing), defined fail
assert (P == 1) else $error("%2d is not prime", Num);

// defined pass, defined fail

assert (P == 1) $display("%2d is prime", Num);
else $error("%2d is not prime", Num);

15



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Failure Messages

+» Messaging: $info, $warning, $error
= Ordered in increasing severity (less severe are suppressible)
= Same argument format as $display, $monitor

= All print additional debugging line (time, scope, file, line),
but simulation continues

« Break: $fatal

" Takes an error_code as extra (1%) argument that is passed
to $finish, which terminates the simulation

= ModelSim produces this pop-up box; | MFfmh v

« Click “No”, otherwise ModelSim will exit @ < vou surevouwantto tnin

16



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Short Tech
Break

17



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Concurrent Assertions

+» Concurrent assertions run continuously throughout

simulation based on a sampling clock and can test for
much more complex behaviors

" Do not need to be placed inside another procedural block
= Assert that a specified property is true

= Like immediate assertions, can specify pass/fail code

" Unfortunately, these do not work in ModelSim

Example: assert that Ready and Done are never true

at the same time property ready nand_done;

@(posedge clk) ~(Ready & Done);
endproperty

assert property (ready_nand_done);

18



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Properties

+» Defined between property and endproperty

" |Includes the ability to define an argument list!

* €.0.,|property Nand(logic A, logic B);
@(posedge clk) ~(A & B);

endproperty

assert property (Nand(Ready, Done));

" Can be defined in-line, but this is stylistically discouraged

+» Complex properties are typically active over (i.e., they
span) a period of time

= Specified using a combination of implications and sequences

* €0. | property handshake;
@(posedge clk) Req |-> ##[1:2] Ack;
endproperty

19



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Implications (Mathematics)

» p = qisread as “p implies q”
= A statement meaning: if p is true, then g must also be true

= The statement evaluates to true or false based on whether
the actual values of p and g support the implication:

p q pP=q
false false
false true
true false
true true

- Logically equivalentto !p || g or p?q:1

20



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Implications (SystemVerilog)

+ Implications are notated by A [-> Cand A |=> C
= Aisthe antecedent (LHS), C is the consequent (RHS)
" The consequent is only evaluated if the antecedent is true

" |n the context of assertions and properties, evaluating to
true is a pass and false is a fail

+» Implication timing:

= An overlapped implication (| ->) evaluates C in the same
clock cycle that A was true

= A non-overlapped implication (| =>) evaluates C on the next
clock cycle after A was true

» Practice: write an equivalent implication to ~(A&B)

21



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Sequences

+» A sequence is a series of Boolean expressions with
defined relationships in time
" Any Boolean expression is, by itself, an implicit sequence

= Sequences can be constructed from other sequences and
sequence operators

" You can name a sequence and give it arguments using
sequence and endsequence

+ Common sequence operators:
= ##N — delays next sequence by N cycles
= [*N]— N consecutive repetitions of the LHS
= [=N] — N non-consecutive repetitions of the LHS
" Any N can be replaced by the inclusive range A: B

22



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Sequences

+» Example: rewritten handshake property

sequence request;
Req;
endsequence

sequence acknowledge;
##[1:2] Ack;
endsequence

property handshake;
@(posedge clk) request |-> acknowledge;
endproperty

23



YA UNIVERSITY of WASHINGTON

L15: Advanced Testing |

EE/CSE371, Spring 2024

Assertion Example

+» Modified vending machine specs:

" The machine only accepts dimes (D, 10¢) and nickels (N, 5¢)

" Once 20¢ has been inserted, a gumball is dispensed;
if more than 20¢ is inserted, all coins are returned

" The machine has two lights

- One to show that it is ready for the next transaction (Ready)
« One to show that further coins need to be inserted (Coin)

Ready

Coin
1

Coin —D>Vending Dispense Gumball

Sensor m Machine ——> Release
«<— FSM Mechanism

CLK ——————;T 1‘

Reset

24



Vending Machine ASM Chart & State Table

YA UNIVERSITY of WASHINGTON

||D|spense|I || Return ||
1 1

L15: Advanced Testing |

S_idle
S 5c¢
S_10c
S_15c

S _gum

S ret

Next State

D
S_10c
S_15¢c

S gum S 15c
S gum S 15c
S_idle
S_idle

S ret
S_idle
S_idle

DN

S_idle
S 5c¢
S_10c

EE/CSE371, Spring 2024

© r O O O O ENNJINE
R O O O o o EEGR
O O R KRB KRB O Coin

o O O O O =




YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Testing the Vending Machine

» Dispense and Ready should never be asserted at the
same time

= Write an immediate assertion to double-check this fact in an
always block:

= Now write a concurrent assertion to double-check this fact
on each clock edge:

26



YA UNIVERSITY of WASHINGTON

L15: Advanced Testing |

EE/CSE371, Spring 2024

Testing the Vending Machine

+» Write properties to double-check the following
expected behaviors:

" From the idle state, inserting a coin should cause the Coin
output to be asserted:

+» Scope reminder:

" You may want to express an immediate assertion or
property using states (parameter, enum)

= Make sure that the assertion or property is inside the
appropriate module then (not the test bench)

27



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Testing the Vending Machine

+» Write properties to double-check the following
expected behaviors:

= |n every clock cycle, exactly 1 of Ready, Coin, Dispense,
and Return should be asserted:

28



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Aside: Default Clocking

+ Instead of putting the clock edge in every property, it
is possible to define a default clocking block:

default clocking clock block;
@(posedge clk)
endclocking

" Then you can omit the @(posedge clk) clause in properties
and assertions!

29



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Short Tech
Break

30



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Lecture Outline

+» Testbenches (yet again)
+» Assertions
+» Object-Oriented Programming

31



L15: Advanced Testing | EE/CSE371, Spring 2024

YA UNIVERSITY of WASHINGTON

Object-Oriented Programming

+» SystemVerilog allows for OOP

" Including inheritance and polymorphism
" For verification — not synthesizable (no good in ModelSim)

+» Encapsulates the data together with the
code/routines that manipulates them
" Proper usage can yield gains in productivity, maintainability,
and thoroughness

+ Facilitates testing — testbench’s goal is to apply stimuli
and then check to see if the result is correct

" We can model our testbenches as objects that perform a
sequence of actions: create a transaction, transmit it,
receive the result, check the result, report any issues Y



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

OOP Terminology

Blueprint for a house A complete house House Address
¥ 123 Elm Street
/ \,

?. f

Turn on/off switches Light switches

Properties

33



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Defining a Class

« A class is defined between class and endclass

class Transaction;

bit [31:0] addr;

function void display();
$display("Transaction: %h", addr);
endfunction

endclass

+» Can be defined at the top-level or within a module or
package

= Typically define each class in a separate file, or can group
related classes in packages

34



YA UNIVERSITY of WASHINGTON

Aside: Packages

L15: Advanced Testing |

+» A package creates an explicitly named scope that

contains declarations intended to be shared

= Can contain types, variables, tasks,
functions, sequences, properties,

classes, etc.

" Must be a top-level block

package pack;
class Trans;
// class body
endclass
endpackage

+» Package components can be accessed directly via the

scope resolution operator (: :) or imported

module use trans();
initial begin
pack: :Trans tr;
// test code
end
endmodule

module use _trans();
import pack::*;
initial begin
Trans tr;
// test code
end
| endmodule

EE/CSE371, Spring 2024

35



YA UNIVERSITY of WASHINGTON L15: Advanced Testing |

Constructing and Using Objects

+ Create class handle, instantiate an object instance,
use dot notation to access properties and methods:

module use_trans();
initial begin
// separate
pack::Trans tr;
tr = new();
end
endmodule

module use_trans();
initial begin
// combined
pack::Trans tr = new();
tr.display();
$write("%0d", tr.addr);
end
endmodule

+» Can define/override the class constructor:

class Transaction;
bit [31:0] addr;

function new();
addr = 371;
endfunction

// rest of class definition...

EE/CSE371, Spring 2024

36



YA UNIVERSITY of WASHINGTON L15: Advanced Testing | EE/CSE371, Spring 2024

Classes Exercise

+~ A MemTrans class to generate transactions for
memory modules

+ Create the class with the following:

4

data_in property of logic type (8 bits)

addr property of logic type (4 bits)

write property of logic type (1 bit)

void function that prints out the values of data_in and
addr in hex and write in binary

A reasonable constructor

» Create a mem_test module that instantiates a

MemTrans object and invokes its function

37



YA UNIVERSITY of WASHINGTON

L15: Advanced Testing |

Layered Testbenches

+» Each block is an object
and passes transaction
objects

Environment |

\ 4

Scoreboard |«

Checker

" Generator creates

F

transactions

Assertions

= Driver talks to design

y A 4 A

DUT

" Monitor receives response

= Scoreboard compares response to expectations

«» Transactions can be transferred and held in FIFO
buffers for queuing

EE/CSE371, Spring 2024

R

I
I{—l
I

|
|+

Functional Coverage




YA UNIVERSITY of WASHINGTON L15: Advanced Testing |

Looking Ahead

+ Classes are required for SystemVerilog’s constrained
randomization features

%+ Randomized testing

= Difficult to completely test large designs
= Can be hard to anticipate all edge cases
" Want to find unexpected errors

- Designed tests only cover what you are anticipating

EE/CSE371, Spring 2024

40



