
EE/CSE371, Spring 2024L12: Pipelining

Design of Digital
Circuits and Systems
Pipelining

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung

EE/CSE371, Spring 2024L12: Pipelining

Relevant Course Information

❖ Quiz 3 starts at 11:50 am

❖ Lab 4 due Friday (5/3), demos next week

❖ Homework 5 released today, due next Friday (5/10)

▪ Static Timing Analysis and Pipelining

❖ Lab 5 released today, due in two weeks (5/17)

▪ Hardest lab for many students

▪ You will need to use the VGA interface on LabsLand

▪ There’s a creative component and opportunity for extra
credit

2

EE/CSE371, Spring 2024L12: Pipelining

Review: Timing Closure

❖ Fixing hold violations: caused by fast data path and
destination register’s clock latency

▪ Add delay in the data path with buffers or pairs of inverters
(done automatically by Quartus)

❖ Fixing setup violations: data arrives too late
compared to the destination register’s clock speed

▪ Slow down the clock (undesirable)

▪ Tell fitter to try harder or confine logic to a smaller area

▪ Rewrite code to simplify logic

▪ Add pipelining (today!)

3

EE/CSE371, Spring 2024L12: Pipelining

Pipelining

❖ Pipelining is a set of data processing elements
connected in series with buffer storage inserted
between

▪ In digital systems, the buffer storage are FFs & registers and
data processing elements are stages of combinational logic

▪ In its simplest form, can be thought of as adding registers in
the middle of a computation to reduce our clock period

4

EE/CSE371, Spring 2024L12: Pipelining

Performance

❖ What does it mean to say X performs better than Y?

❖ Silly example: a Tesla vs. a school bus

▪ 2015 Tesla Model S P90D
• 5 passengers, 2.8 secs in quarter mile

▪ 2011 Type D school bus
• Up to 90 passengers, quarter mile time?

5

EE/CSE371, Spring 2024L12: Pipelining

Measurements of Performance

❖ Latency (or response time or execution time)

▪ Time to complete one task

❖ Throughput (or bandwidth)

▪ Tasks completed per unit time

7

EE/CSE371, Spring 2024L12: Pipelining

Analogy: Doing Laundry

❖ Deepti, Gayathri, Jared, and Lancelot
each have one load of clothes to
wash, dry, fold, and put away

▪ Washer takes 30 minutes

▪ Dryer takes 30 minutes

▪ “Folder” takes 30 minutes

▪ “Stasher” takes 30 minutes to put clothes
into drawers

8

D G J L

EE/CSE371, Spring 2024L12: Pipelining

Sequential Laundry

▪ Sequential laundry takes 8 hours for 4 loads

9

Task
Order

G

J

L

D

Time
6 PM 7 8 9 10 11 12 1 2 AM

3030 30 30 30 30 303030 30 3030 30 30 3030

EE/CSE371, Spring 2024L12: Pipelining

Pipelined Laundry

▪ Pipelined laundry takes 3.5 hours for 4 loads!

10

3030 30 3030 30 30

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task
Order

G

J

L

D

EE/CSE371, Spring 2024L12: Pipelining

Pipelining Notes

❖ Pipelining helps throughput
of overall workload, but not
latency of single task

▪ Reduction in critical pathway
allows for shorter clock period

❖ Multiple tasks operating
simultaneously using different resources

▪ Executing different parts of multiple computations at the
same time using the same hardware – like an assembly line

▪ Greater utilization of logic resources
11

3030 30 3030 30 30

6 PM 7 8 9

Ta
sk

 O
rd

er

G

J

L

D

EE/CSE371, Spring 2024L12: Pipelining

Pipelined Performance Example

❖ Assume 𝑡𝐶𝑂 = 10 ns, 𝑡𝑎𝑑𝑑 = 90 ns, 𝑡𝑠ℎ𝑙 = 50 ns

▪ For simplicity, assume 𝑡𝑐𝑙𝑘 = 𝑡𝑤𝑖𝑟𝑒 = 𝑡ℎ = 𝑡𝑠𝑢 = 0

❖ Solve for the minimum clock period for each circuit

▪ Given this minimum clock period, solve for the latency and
throughput of each circuit

▪ Circuit 1:

▪ Circuit 2:

12

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Performance

❖ In theory, can measure “speedup” as the ratio in time
per completion (TC) of computations

▪ speedup =
TCoriginal

TCpipelined

▪ speedupmax = # of pipeline stages

▪ Speedup is reduced by unbalanced stages (and 𝑡𝐶𝑂):

13

Time 100 200 300 400

Circuit 1: 150 ns

150 ns
𝑡𝑎𝑑𝑑 𝑡𝑠ℎ𝑙

𝑡𝑎𝑑𝑑 𝑡𝑠ℎ𝑙
𝑡𝑎𝑑𝑑 𝑡𝑠ℎ𝑙

Circuit 2: 𝑡𝑎𝑑𝑑 𝑡𝑠ℎ𝑙
𝑡𝑎𝑑𝑑 𝑡𝑠ℎ𝑙

𝑡𝑎𝑑𝑑 𝑡𝑠ℎ𝑙

100 ns

100 ns

EE/CSE371, Spring 2024L12: Pipelining

Technology

Break
14

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Registers

❖ Where to add pipeline registers?

▪ For a given computation, all paths from any input to output
must pass through the same number of pipeline registers

❖ Example: 𝑦𝑖 = 𝑎𝑖 × 𝑏𝑖 × 𝑐𝑖 + 𝑑𝑖

15

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Registers

❖ Where to add pipeline registers?

▪ For a given computation, all paths from any input to output
must pass through the same number of pipeline registers

❖ Example: 𝑦𝑖 = 𝑎𝑖 × 𝑏𝑖 × 𝑐𝑖 + 𝑑𝑖
▪ Signal flow:

16

Cycle 1 2 3 4

Reg11

Reg12

Reg13

Reg21

Reg22

EE/CSE371, Spring 2024L12: Pipelining

Data Flow Graph

❖ A data flow graph (DFG) is a visualization tool that
can be used to simplify circuits into directed graphs

▪ Nodes are computations (and their delays)

▪ Edges represent data dependencies

17

+

× +×

×

a

b

c

d

e

f

Y

Z

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Cutset

❖ A cutset is a set of edges that form two disjoint
graphs when removed/cut

▪ Feedforward cutset: data travels only forward in the cutset

▪ Feedback cutset: data travels in both directions in the cutset

❖ Pipelining is done by placing a register along every
edge in a pipeline (feedforward) cutset:

18

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Cutset Example

❖ The following data flow graph shows the propagation
delay in each node

▪ For simplicity, assume 𝑡𝐶𝑂 = 0

▪ Original (non-pipelined) performance:

19

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Cutset Example

❖ The following data flow graph shows the propagation
delay in each node

▪ Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation
• For simplicity, assume 𝑡𝐶𝑂 = 0

20

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Cutset Example

❖ The following data flow graph shows the propagation
delay in each node

▪ Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation
• For simplicity, assume 𝑡𝐶𝑂 = 0

21

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Cutset Example

❖ The following data flow graph shows the propagation
delay in each node

▪ Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation
• For simplicity, assume 𝑡𝐶𝑂 = 0

22

EE/CSE371, Spring 2024L12: Pipelining

Pipeline Design Questions

❖ When should I add pipelining?

▪ Check if it is possible first (i.e., a pipeline cutset must exist)

▪ Want to reduce the critical path in your computation/system

▪ Your system can afford the increase in latency and hardware

❖ Where do the pipeline registers go?

▪ Must be placed at proper pipeline cutsets

▪ Want to make pipeline stages as balanced as possible to
maximize speedup

23

EE/CSE371, Spring 2024L12: Pipelining

Design Example: 16-bit Ripple-Carry Adder

❖ Problem: 𝐶𝑛 takes a long time to compute!

❖ 2-stage pipeline: which cutset to use?

24

+ + +

b0

EE/CSE371, Spring 2024L12: Pipelining

Design Example: 16-bit Pipelined Adder

25

EE/CSE371, Spring 2024L12: Pipelining

Design Example: 16-bit Pipelined Adder

26

EE/CSE371, Spring 2024L12: Pipelining

Design Example: FIR Filter

27

EE/CSE371, Spring 2024L12: Pipelining

Design Example: Pipelined FIR Filter

28

