
EE/CSE371, Spring 2024L07: ASMD II

Design of Digital
Circuits and Systems
ASM with Datapath II

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung

EE/CSE371, Spring 2024L07: ASMD II

Relevant Course Information

❖ Homework 3 due Friday (4/19)

❖ Homework 4 released Thursday

❖ Quiz 2 (ROM, RAM, Reg files) this Thu at 11:50 am

▪ Based heavily on Homework 2

▪ Memory sizing, addressing, initialization, and
implementation (i.e., circuit diagram)

❖ Lab 3 reports due next Friday (4/26)

▪ Ideally finish by early next week so you can start Lab 4,
which will be released this Thursday

2

EE/CSE371, Spring 2024L07: ASMD II

ASMD Design Procedure

❖ From problem description or algorithm pseudocode:

1) Identify necessary datapath components and operations

2) Identify states and signals that cause state transitions
(external inputs and status signals), based on the necessary
sequencing of operations

3) Name the control signals that are generated by the
controller that cause the indicated operations in the
datapath unit

4) Form an ASM chart for your controller, using states,
decision boxes, and signals determined above

5) Add the datapath RTL operations associated with each
control signal

3

EE/CSE371, Spring 2024L07: ASMD II

Design Example

❖ System specification:

▪ Flip-flops 𝐸 and 𝐹

▪ 4-bit binary counter 𝐴 = 0b𝐴3𝐴2𝐴1𝐴0
▪ Active-low reset signal 𝑟𝑒𝑠𝑒𝑡_𝑏 puts us in state 𝑆_𝑖𝑑𝑙𝑒,

where we remain while signal 𝑆𝑡𝑎𝑟𝑡 = 0

▪ 𝑆𝑡𝑎𝑟𝑡 = 1 initiates the system’s operation by clearing 𝐴 and
𝐹. At each subsequent clock pulse, the counter is
incremented by 1 until the operations stop.

▪ Bits 𝐴2 and 𝐴3 determine the sequence of operations:
• If 𝐴2 = 0, set 𝐸 to 0 and the count continues

• If 𝐴2 = 1, set 𝐸 to 1; additionally, if 𝐴3 = 0, the count continues,
otherwise, wait one clock pulse to set 𝐹 to 1 and stop counting (i.e.,
back to 𝑆_𝑖𝑑𝑙𝑒)

4

EE/CSE371, Spring 2024L07: ASMD II

Design Example #1 (ASMD Chart)

❖ Synchronous or asynchronous reset?

5

EE/CSE371, Spring 2024L07: ASMD II

Design Example #1 (SV, Controller)

6

module controller (set_E, clr_E, set_F, clr_A_F,
incr_A, A2, A3, Start, clk,
reset_b);

// port definitions
input logic Start, clk, reset_b, A2, A3;
output logic set_E, clr_E, set_F, clr_A_F, incr_A;

// define state names and variables
enum {S_idle, S_1, S_2 = 3} ps, ns;

// controller logic w/synchronous reset
always_ff @(posedge clk)

if (~reset_b)
ps <= S_idle;

else
ps <= ns;

// next state logic
always_comb

case (ps)
S_idle: ns = Start ? S_1 : S_idle;
S_1: ns = (A2 & A3) ? S_2 : S_1;
S_2: ns = S_idle;

endcase

// output assignments
assign set_E = (ps == S_1) & A2;
assign clr_E = (ps == S_1) & ~A2;
assign set_F = (ps == S_2);
assign clr_A_F = (ps == S_idle) & Start;
assign incr_A = (ps == S_1);

endmodule // controller

EE/CSE371, Spring 2024L07: ASMD II

Design Example #1 (SV, Datapath)

7

module datapath (A, E, F, clk, set_E, clr_E, set_F, clr_A_F,
incr_A);

// port definitions
output logic [3:0] A;
output logic E, F;
input logic clk, set_E, clr_E, set_F, clr_A_F, incr_A;

// datapath logic
always_ff @(posedge clk) begin

if (clr_E) E <= 1'b0;
else if (set_E) E <= 1'b1;
if (clr_A_F)

begin
A <= 4'b0;
F <= 1'b0;

end
else if (set_F) F <= 1'b1;
else if (incr_A) A <= A + 4'h1;

end // always_ff

endmodule // datapath

EE/CSE371, Spring 2024L07: ASMD II

Design Example #1 (SV, Top-Level Design)

8

module top_level (A, E, F, clk, Start, reset_b);

// port definitions
output logic [3:0] A;
output logic E, F;
input logic clk, Start, reset_b;

// internal signals
logic set_E, clr_E, set_F, clr_A_F, incr_A;

// instantiate controller and datapath
controller c_unit (.set_E, .clr_E, .set_F,

.clr_A_F, .incr_A, .A2(A[2]),

.A3(A[3]), .Start, .clk,

.reset_b);
datapath d_unit (.*);

endmodule // top_level

EE/CSE371, Spring 2024L07: ASMD II

Design Example #2: Fibonacci

❖ Design a sequential Fibonacci number circuit with the
following properties:

▪ i is the desired sequence number

▪ f is the computed Fibonacci number:

▪ ready means the circuit is idle and ready for new input

▪ start signals the beginning of a new computation

▪ done_tick is asserted for 1 cycle when the computation is
complete

9

𝑓𝑖𝑏 𝑖 = ቐ
0, 𝑖 = 0
1, 𝑖 = 1
𝑓𝑖𝑏 𝑖 − 1 + 𝑓𝑖𝑏 𝑖 − 2 , 𝑖 > 1

𝑓𝑖𝑏

𝑛
f

start

i

clk

𝑚

ready
done_tick

EE/CSE371, Spring 2024L07: ASMD II

Design Example #2 (Pseudocode)

❖ Pseudocode analysis:
▪ Variables are part of datapath; assignments become RTL operations

▪ Chunks of related actions should be triggered by control signals

▪ Decision points become status signals

10

EE/CSE371, Spring 2024L07: ASMD II

Design Example #2 (Control-Datapath)

11

EE/CSE371, Spring 2024L07: ASMD II

Design Example #2 (ASMD Chart)

12

EE/CSE371, Spring 2024L07: ASMD II

Design Example #2 (SV)

13

fib_control:
// port definitions
// define state names and variables
// controller logic w/synchronous reset
// next state logic
// output assignments

fib_datapath:
// port definitions
// datapath logic

fib:
// port definitions
// define status and control signals
// instantiate control and datapath

EE/CSE371, Spring 2024L07: ASMD II

Other Hardware Algorithms

❖ Sequential binary multiplier or divider

❖ Arithmetic mean

❖ Lab 4: Bit counting

❖ Lab 4: Binary search

❖ Lab 5: Bresenham’s line

14

EE/CSE371, Spring 2024L07: ASMD II

Technology

Break
15

EE/CSE371, Spring 2024L07: ASMD II

Hardware Acceleration

❖ ASMD as a design process can be used to implement
software algorithms

❖ Custom hardware can accelerate operation:

▪ Hardware can better exploit parallelism

▪ Hardware can implement more specialized operations

▪ Hardware can reduce “processor overhead”
(e.g., instruction fetch, decoding)

❖ “Hardware accelerators” are frequently used to
complement processors to speed up common,
computationally-intensive tasks

▪ e.g., encryption, machine vision, cryptocurrency mining

16

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplication

❖ Multiplication of unsigned numbers

17

EE/CSE371, Spring 2024L07: ASMD II

Parallel Binary Multiplier

❖ Parallel multipliers require a lot of hardware

18

EE/CSE371, Spring 2024L07: ASMD II

Sequential Binary Multiplier

❖ Design a sequential multiplier that uses only one
adder and a shift register

▪ Assume one clock cycle to shift and one clock cycle to add

▪ More efficient in hardware, less efficient in time

❖ Considerations:

▪ 𝑛-bit multiplicand and multiplier yield a product at most
how wide?

▪ What are the ports for an 𝑛-bit adder?

▪ How many shift-and-adds do we do and how do we know
when to stop?

19

EE/CSE371, Spring 2024L07: ASMD II

Sequential Binary Multiplier

❖ Design a sequential multiplier that uses only one
adder and a shift register

▪ Assume one clock cycle to shift and one clock cycle to add

▪ More efficient in hardware, less efficient in time

❖ Implementation Notes:

▪ If current bit of multiplier is 0, then skip the adding step

▪ Instead of shifting multiplicand to the left, we will shift the
partial sum (and the multiplier) to the right

▪ We will re-use the multiplier register for the lower half of
the product
• Treat carry, partial sum, and multiplier as one shift register {C, A, Q}

20

EE/CSE371, Spring 2024L07: ASMD II

Sequential Binary Multiplier Operation

21

❖ A few steps of:
11010111

x 00010111

Operation (completed) C A Q P

Initialize computation 0 00000000 00010111 1000

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplier Specification

❖ Datapath

▪ (2𝑛+1)-bit shift register with bits split into 1-bit 𝐶, 𝑛-bit 𝐴,
and 𝑛-bit 𝑄

▪ Multiplicand stored in register 𝐵, multiplier stored in 𝑄

▪ An 𝑛-bit parallel adder adds the contents of 𝐵 to 𝐴 and
outputs to {𝐶, 𝐴}

▪ A log2 𝑛 + 1 -bit counter 𝑃

❖ Control

▪ Inputs 𝑆𝑡𝑎𝑟𝑡 and 𝑅𝑒𝑠𝑒𝑡, outputs 𝑅𝑒𝑎𝑑𝑦 and 𝐷𝑜𝑛𝑒

▪ Status signals:

▪ Control signals:

22

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplier Block Diagram

23

Done

P_Zero

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplier (ASMD Chart)

24

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplier Implementation

❖ Controller Logic

25

𝐿𝑜𝑎𝑑_𝑟𝑒𝑔𝑠 =

𝑆ℎ𝑖𝑓𝑡_𝑟𝑒𝑔𝑠 =

𝐴𝑑𝑑_𝑟𝑒𝑔𝑠 =

𝐷𝑒𝑐𝑟_𝑃 =

𝑅𝑒𝑎𝑑𝑦 =

𝐷𝑜𝑛𝑒 =

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplier (SV, Datapath)

26

module datapath #(parameter WIDTH=8)
(product, Q, P, multiplicand, multiplier, clk,
Load_regs, Shift_regs, Add_regs, Decr_P);

// port definitions
output logic [2*WIDTH-1:0] product;
output logic [WIDTH-1:0] Q, P; // note: unnecessary bits for P
input logic [WIDTH-1:0] multiplicand, multiplier;
input logic clk, Load_regs, Shift_regs, Add_regs, Decr_P;

// internal logic
logic C;
logic [WIDTH-1:0] A, B;

// datapath logic

endmodule

EE/CSE371, Spring 2024L07: ASMD II

Binary Multiplier (SV, Datapath)

27

module datapath #(parameter WIDTH=8)
(product, Q, P, multiplicand, multiplier, clk,
Load_regs, Shift_regs, Add_regs, Decr_P);

// port definitions
...

// internal logic
...

// datapath logic
always_ff @(posedge clk) begin

if (Load_regs) begin
A <= 0; C <= 0; P <= WIDTH;
B <= multiplicand;
Q <= multiplier;

end
if (Decr_P) P <= P - 1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;

end // always_ff

assign product = {A, Q};

endmodule

