YA UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop
Gayathri Vadhyan Jared Yoder
Lancelot Wathieu Matthew Hung

W UNIVERSITY of WASHINGTON LO05: Algorithmic State Machines EE/CSE371, Spring 2023

Relevant Course Information

+» Homework 2 due Wednesday (4/10)
+» Homework 3 released today, due next Friday (4/19)

+» Lab 2 reports due 4/12, demos 4/15-19
+» Lab 3 released today, due in two weeks (4/26)

" lab 3 + 4 are really ~¥1.5 weeks long, so don’t wait!

+» Quiz 2 not until next Thursday (4/18)

= Spacing between material and quiz will get longer and
longer; make sure to give time to review

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Lab 3 Notes

+~ More practical applications of memory on the DE1-
SoC using audio generation and filtering
" Task 2: ROM with MIF file to generate audio
" Task 3: Use a FIFO buffer to implement a noise filter

+~ See Audio_Guide. pdf in the spec for how to use the
LabsLand Audio Interface to send audio input and
record audio output:

<« Microphone ‘ <}:| <‘ absls_and Aud|o>
DE1-SoC ‘ ’ ource
FPGA - | :
1 Speaker LabsLand Audio
.) Recorder

YA UNIVERSITY of WASHINGTON LOS: Algorithmic State Machines

Lab 3 Notes

EE/CSE371, Spring 2023

+» Example of communication as you interface with an

audio CODEC (coder/decoder)

" Inputs: read,
write,

writedata left,
writedata right

" Qutputs: read ready,
write ready,

Audio
CODEC
Interface

read ready

write_ready

Tead

write

readdata left

readdata right |
wniedata e

~ witedats “right
| il —

readdata_left,
readdata_right

Your Circuit

= Must wait for both sides (CODEC + your circuit) to be ready

for data transmission in either direction!

- Data is ready/generated and receiver is ready to accept

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Review Question: Decoder

+» 2:4 binary decoder has 2 select bits that specify which
of 4 output bits is high (the others are low) —
implement one below using only NOT, AND, and OR

gates:

o> do A

ol[—adl\ |)"_C)d2
deder \—d2

W1—43 —
T ———CD—_@‘”

select N
|

—\

s1|@®] so|®

W UNIVERSITY of WASHINGTON LO05: Algorithmic State Machines EE/CSE371, Spring 2023

A%>O~+O
Review Question: DEMUX Tn)| »amxf;:f\iﬁﬁ

7;,_\“‘;“" 643
+» Implement a 2-bit, 2-to-4 DEMUX: Select

= A DEMUX takes an input bus | m|®—
and connects to one of ma%’y‘/ ol@]
output buses specified by
selector bits

= Assume you have a working 0L

2:4 binary decoder and
write in the signals d,, d4, d,,
and d; where needed.

Decd

a o o
— N W

s0

YA UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines

Simple Reg File uses DEMUX

MUX

w_data
8
W_en i
— 4 X 8‘b|t - data
w_addr 2 Regfile 8
r_addr
2
Reg0
w_data0 101010 1]rm—p 1 O e
o 1) ACCOM
Rils ")’;A,b
(_o""Cd-e w_en
oncble -
w_addr

r_addr

EE/CSE371, Spring 2023

00100010 data

W UNIVERSITY of WASHINGTON LO05: Algorithmic State Machines EE/CSE371, Spring 2023

Specifying Synchronous Digital Systems

+~ So far:
= SystemVerilog
" Block diagrams
" Finite State Machines

= Circuit/gate diagrams

< |ssues:

= SV is a specified language (rigid syntax) and can be very
abstract (behavioral)

" Block diagrams can be vague or unspecified
= FSMs don’t scale well (# of states + transitions)
= Gate-level is too detailed and specific

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Algorithmic State Machine (ASM)

+» ASM charts are a method for designing and depicting
synchronous digital systems

= Use more generic syntax (RTL) than SystemVerilog
= Contain more structured information than FSM state

diagrams Reset_b
Can more easily design - L oo
your system from a i SO

hardware algorithm &

y 010 y 011 y 100
S 1 §2 S 3

W UNIVERSITY of WASHINGTON LO05: Algorithmic State Machines EE/CSE371, Spring 2023

Control and Datapath

+ Signal classification in a SDS:
" Data: information manipulated/processed by the system

" Control: signals that coordinate and execute the system
operations

+» We can logically separate a SDS into two distinct

. . Input
parts/circuits: g
= Datapath: partsneeded | C[""""""""""" 1
for data manipulation i signals
“ ” (external) { Control unit Datapath
(“the brawn”) g I GV unit
i M&ke..s < Status S G‘d’ i
= Control: logic that [deciioay Pl Grwands ||
tells the datapath what l --- 1
needs to be done (“the b indatos iy

10

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Control and Datapath: FIFO Buffer

% Circular queue implementation from last lecture:
= Datapath and control split?

————
—_—

Roatvpedin
w_data l »w_data r_data # r_data 1(75,1,;’
((N .
('m wr M?«), w_eLn Codlry] (o\"ff"‘d’ ~b)
r & Sy Y ! A
»{ w_addr r_addr j i 4
! Control
Input | signals
N register file b da 1
exiernal):, Control unit Datapath
i (FSM) unit
! — | ,
— 5)Sg?/
. ! sphals
(«‘:\P‘-\T) / w_addr r_addr None
5‘9’\‘. wr - > rd fe rd . RS LA e
inpul .ﬁjm..\) Y
full - full empty + empty Status Output
indicators data
(snm i FIFO \ (st b
ustr P control circuit e
((ov\'t"o \ (

e

11

W UNIVERSITY of WASHINGTON LO05: Algorithmic State Machines EE/CSE371, Spring 2023

Algorithms for Hardware

+» Sequential algorithms:
" Variables used as symbolic memory locations
= Sequential execution dictates the ordering of operations

+» Hardware implementation:
= Registers store intermediate data (variables)

= Datapath implements all necessary register operations
(computations attached to register inputs)

= A control path FSM specifies the ordering of register
operations
% This design scheme sometimes referred to as
register-transfer level (RTL) design

12

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

CL = combinational los\'Z

Algorithms for Hardware SU = sequentil o

% The resulting system is called an algorithmic state
machine (ASM) or FSM with a datapath (FSMD):

data path
cL cL/sl clL Sy ‘
. dat
d q ata
. A | : output
routing . : routing data :
: functional units :
data - network network >reglslers
input -
status signals T control signals
——
... . BM
w“'p\..‘\‘;
cL SL L :
: 4 q]
: next-state | state output D status
: logic > register logic -
command . I ’7 :

control path 13

YA UNIVERSITY of WASHINGTON

RTL Operations

+» Basic form:

LO5: Algorithmic State Machines

o

ce? v

[

Tdest <~ f(rsrcl» Tsrc2s -

X

) 7,'SI'C'I’L)

= 1; represent registers and f () represents some
combinational function

«» Examples:

7”1 «— O C\Cof i

[1)

I <n " replace v, VO‘L te valve i 0

Ty <15 > 3
l<—i+1

d < s;+5,+ 53
Yy axa

Cha)

W

EE/CSE371, Spring 2023

14

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

RTL Operations

+» Basic form:

Tdest < f(rsrcb Tsrc2y =) rsrcn)

= 1; represent registers and f () represents some
combinational function

« Timing Interpretation:

= After the start of a clock cycle, the outputs of all registers
update and become available

= During the rest of the clock cycle, these outputs propagate
through the combinational circuit that performs f ()

= At the next clock trlgger/cyclg the result is stored into ryest

(1¢]
/\, fc_l, F o
‘ rsv‘c) > 1D @ dest

15

LO5: Algorithmic State Machines EE/CSE371, Spring 2023

YA UNIVERSITY of WASHINGTON

RTL Operations

«» Basic form:
Tdest < f(rsrcb Tsrc2)) 7"srcn)

= 1; represent registers and f () represents some
combinational function

+ Implementation Example: a < a—b + 1
q-3t=7 q-341=5

%—E]/T#i"*@@ . N —

—— S — —
E _-)lDl\&(’-—J a_reg 9 X 7 l‘ \X S

| \
ﬂuﬁ ﬂi[

16

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Technology
Break

17

W UNIVERSITY of WASHINGTON LO05: Algorithmic State Machines EE/CSE371, Spring 2023

ASM Chart

State name
S_O

Casserted
? 81)1tlgut s%gnals 0 (False)

1 (True)

Condition

or actions expression

(Moore type)

showld only J_/_/[Gn he on
have one any Po{l' h
en‘rer'mb p{n‘n‘\

(a) State box (b) Decision box

— pa‘l’h(u\ﬁ' 6 wive)

J&eauer‘kd Sl’y\a\s
Can be OV\H""QA

@ state box +

! |

! |

1 1

\ : . 1

~ 11d d

<oé;gnc1}%ﬁ)¥1al outputs : arceension an :
. :

! |

! |

1 1

1 1

. conditional boxes
or actions (Mealy type) connected to

mMust be on P"’*L‘ its exit path
'(vws [()ecam bbx ______________
(¢) Conditional output box (d) ASM block

18

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

ASM Blocks

+ Each block describes the state machine operation in a
given state

" For every valid combination of inputs, there must be exactly
one exit path

=" There should be no internal feedback

-—1

19

YA UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2023

Worked Example #1

w=1

Noore Machine
Ly no conditomal oufput boxes

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Worked Example #2

« Convert this state machine to an ASM chart:

w=0/z=0

Mealy Machine
L no wi’p\i\' 5\'9m\s i shie boxes

omisaion o‘e ——/7
Cond tibnal o»‘i'()\j'
box im‘)‘.’e} 2=0

ASK ub(.‘(inclkc)ej
Cond tinal odpud boxes

21

YA UNIVERSITY of WASHINGTON LO5: Algorithmic State Machines EE/CSE371, Spring 2023

Example #3
«» Draw an ASM chart for threeOnes: asserts out iff last
3 values of in were all 1’s. Moore machine
Reset
‘_S.,—JL—'l e
' P

22

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Example #4

« Convert this state machine to an ASM chart:
= 1input: X, 5outputs: Y,,Y,, Y. (Moore), Z,, Z, (Mealy)

XleZ
X/74.7
X/2122 % /i
Resc’\'
| so —"(
I\Ya\ R
7 || sy l)
(o@i_—‘——'—hr_:(_b—-l; | \
(-—a——-J\ | l 'Sz
| =X ‘3\ e YC] \

\ S

23

W UNIVERSITY of WASHINGTON L05: Algorithmic State Machines EE/CSE371, Spring 2023

Worked Example #5 (Preview)

«» Convert the ASM chart for a control circuit shown in
figure (b) to a state diagram:

24

