YA UNIVERSITY of WASHINGTON

Design of Digital
Circuits and Systems

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop
Gayathri Vadhyan Jared Yoder
Lancelot Wathieu Matthew Hung

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Relevant Course Information

+» Lab 1 report due tomorrow (4/5)
+» Lab 1 demo due by end of 4/12

= See Lab Demo Slot assignment on Canvas

+» Lab 2 report due next Friday (4/12)
+» Homework 2 due next Wednesday (4/10)
+» Use Ed Discussion to ask course questions

" |f sensitive, can email from a UW-associated email account
" Do NOT use Canvas messages

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Lab 2 Notes

+ Implementing a few RAM variants on the DE1-SoC

= Using both a library catalog and user-specified RAM modules

+» Learn how to create and use a memory initialization
file (.mif) to initialize memory on your board

+ Feel free to reuse other modules (e.g., input, clock
divider, 7-seg, counter) from 271/369

= Simple modules don’t need diagrams or simulations, but

they should be shown in the block diagram and mentioned
in your report

YA UNIVERSITY of WASHINGTON L04: Memory II

EE/CSE371, Spring 2024

Synchronous Single-Port RAM (Review)

+ Synchronous Inputs: “urite enable”

= wren (1 = write, @ = read) Wr‘én .,

= addr (4-bit address) addr —— Single-Port |~ dout

A D
. . . RAM

= din (D-bit data) din 7 A

% Synchronous Output: k-
. A‘ Gddress bf‘" é:—) 2 a(.llf
= dout (D-bit data) hrew B sl

+» Implementation hints:
= Will need an internal RAM array of what size? 2% x D

" To synchronize, should update on clock triggers d.eys - £ € (e c\)
" What should dout do when wren =1? olss set © din

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Synchronous Single-Port RAM (Review)

module RAM single #(parameter A, D)
(clk, wren, addr, din, dout);

input 1logic clk, wren;

input 1logic [A-1:0] addr;

input 1logic [D-1:0] din;

output logic [D-1:0] dout; _— could be edher srdering sine

L we Ouf’er\"" lo&A'mj “fM [“Fl’le,
logic [D-1:0] RAM [0:2**A-1];

always ff @(posedge clk) begin
if (wren) begin // st
RAM[addr] <= din;
dout <= din;
end —Ecw\
else A read
dout <= RAM[addr];
end // always ff

endmodule

4 be RAI"\[aMrl be couse W\"HOCLMj as.srgnmen'l'

YA UNIVERSITY of WASHINGTON

LO4: Memory Il

EE/CSE371, Spring 2024

Simplified Synchronous Dual-Port RAM

+» 2 ports with 1 dedicated to writing and the other

dedicated to reading
% Synchronous Inputs:

= wren (1 = write, @ = read)
= addr_w (A-bit address)
= addr_r (4-bit address)
= din_w (D-bit data)
% Synchronous Output:
= dout_r (D-bit data)

wren —
addr_w T

addr r —

. A
din_w ﬁDL-

Simplified
Dual-Port

RAM
JAN

—— dout_r
D

+ Differences in SystemVerilog?

CLK

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Synchronous Dual-Port RAM

+» The most general configuration — each port can either

read or write
wren_a —
= Synchronous Inputs: addr_a — —-> dout_a

din_a — Dual-Port

= wren_a and wren_b wren b —- RAM -

—/— dou

= addr_aand addr b addr_b —= D -
dln_b ﬁDL' A

= din_aanddin b ClK

» Synchronous Output:
= dout_aanddout b

» Differences in SystemVerilog?

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Memory

+ Several forms of memory are available, which include:
s
= Read-only memory (ROM)
® Random-access memory (RAM)

= Register files
- Small, fast, fixed-sized memory that hold CPU data state

" Firstin, first out (FIFO) buffers

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Memory Type #3: Register File

Register File — a collection of registers

"] input data port —can only write to 1 register at a time

" 1+ output data ports — can read from 1+ register at a time
= Address inputs to specify read/write targets

= Write enable

Frequently used in CPUs or as fast buffers

Example: RW RA RB

Write Enable 4J(4J(4J(

J] 16 x 64-bit

Registers

10

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Simple Register File (4 reg, 1 read port)

w_data
w_en 4 X 8-bit

w_addr Regfile 8

r_addr

w_dataj0 101010 1

———
P—
ﬂg— —IO
| Reg? MUX 00100010 data
I —

22 A

w_addr

r_addr E

11

EE/CSE371, Spring 2024

YA UNIVERSITY of WASHINGTON L04: Memory II

Memory Review

% Can think of reg file as a
2-D array of D flip-flops:

+» The simple reg file was labeled 4 X 8

= SystemVerilog array declaration:

+» For a generic reg file with parameters D WIDTH and
A_WIDTH:
= Depth:
= Width:
= SystemVerilog array declaration:

12

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Register File with 1 Read Port (SV)

module reg file #(parameter D WIDTH=8, A WIDTH=2)
(clk, w _data, w_en, w_addr, r_addr, r_data);

input 1logic clk, w_en;

input 1logic [A WIDTH-1:0] w_addr, r_addr;
input 1logic [D _WIDTH-1:0] w_data;

output logic [D WIDTH-1:0] r_data;

// array declaration (registers)
logic [D_WIDTH-1:0] array_reg [0:2**A WIDTH-1];

// write operation (synchronous)
always ff @(posedge clk)
if (w_en)
array_reg[w_addr] <= w_data;

// read operation (asynchronous)
assign r_data = array_reg[r_addr];

endmodule

13

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Where’s the Hardware?

module reg file #(parameter D WIDTH=8, A WIDTH=2)
(clk, w _data, w_en, w_addr, r_addr, r_data);

input 1logic clk, w_en;

input 1logic [A WIDTH-1:0] w_addr, r_addr;
input 1logic [D _WIDTH-1:0] w_data;

output logic [D WIDTH-1:0] r_data;

// array declaration (registers)
logic [D_WIDTH-1:0] array_reg [0:2**A WIDTH-1];

// write operation (synchronous)
always ff @(posedge clk)
if (w_en)
array_reg[w_addr] <= w_data;

// read operation (asynchronous)
assign r_data = array_reg[r_addr];

endmodule

14

YA UNIVERSITY of WASHINGTON L04: Memory II

Register File with 2 Read Ports

w_data

en 8

w

— : r _data0
w_addr ; 4Rx E?cflb't 8

egfile

r _addrO 7 & 3 r_datal
r addrl

CLK
+» What would change in hardware?

+» What would change in SystemVerilog?

EE/CSE371, Spring 2024

15

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Register File with Synchronous Read

+» Back to the 1 read port version, but now we want to
make reading synchronous:

*" What would change in SystemVerilog?

= What would change in hardware?

16

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Short Tech
Break

17

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Memory Type #4: FIFO Buffer

2+ First-In First-Out (FIFO) Buffer

" Data storage such that elements that arrived earlier are

accessed before elements that arrived later
FIFO buffer

k% b, ¥
i Cal

\ data written \'. data read

into FIFO from FIFQ
" Has a limited capacity, so there is a notion of fullness

= Useful for synchronization, especially in communication
(e.g., UART, disk, network)

18

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

FIFO Buffer Functionality

Implementation we will work towards:

rd empty
wr FIFO Buffer full
w_data r _data

CLK
" rd signals to read the next element on r_data,

wr signals to write w_data into the buffer

= Qutgoing data is read from the front/head of the buffer and
incoming data is written to the back/tail of the buffer

" Can be implemented by wrapping a regular memory
component with a special controller
- However, the FIFO buffer has no visible notion of address!

19

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

FIFO Read Configurations

+ First Word Fall Through (FWFT)

= Asynchronous read: front element of buffer always “falls
through” and is immediately available on the output bus

« Including when an element is written to an empty buffer!

= rd therefore acts more like a “remove” signal

« Standard

= Synchronous read: front element of buffer becomes
available on next clock cycle after rd is asserted

" rd therefore acts more like a “request” signal

20

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

FIFO Read Configurations

+» Read configuration comparison

" FWFT can be converted to standard by registering the
output:

read data from standard FIFO
read data from FWFT FIFO

standard FIFO

data —u—b | d
rd ; rd FWFT FIFO —p{ €N
' > >

21

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

FIFO Implementation

+» A FIFO buffer is often implemented as a circular
queue with two pointers: f rd ptr
= rd ptrindicates the location of the

wr ptr
front/head (i.e., the first valid data) ﬂ =L

and advances when rd is asserted

= wr ptrindicates the location of the a
back/tail (i.e., the first empty element) ﬁ#

and advances when wr is asserted

= empty and full as buffer fullness status indicators

- These are tricky because both situations have rd_ptr ==wr_ptr

22

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

Circular Queue Example Operation

rd ptr rd ptr rd ptr Wr ptr
WI‘ ptr

an»
.) €) O
s/ ‘«-o

wr ptr wr ptr

). initial (empty)). after awrite). 3more writes (d). after aread). 4 more writes

rd tr
P rd ptr

Of 09 /

rd ptr

). 1 more write (full)). 2reads). 5 more reads). 1T more read (empty)

23

YA UNIVERSITY of WASHINGTON

Circular Queue Implementation

LO4: Memory Il

module and a FIFO controller

" The controller handles the “arrangement” of the linear
memory space into a circular queue

-+

w_data

)

——

w_data r_data
w_en

w_addr r_addr

> register file

Wr

full -

w_addr r_addr

Wr rd

full empty

FIFO
> control circuit

2/

* r_data

» empty

EE/CSE371, Spring 2024

% A circular queue can be implemented using a RAM

24

YA UNIVERSITY of WASHINGTON

FIFO Controller

LO4: Memory Il

« FIFO controller internals:

= rd_ptr andwr_ptr are counters

= empty and full are flip-flops

= Next state logic based on inputs rd and wr:

EE/CSE371, Spring 2024

rd wr rd _ptr wr_ptr empty full
%) %)
%) 1
1 %)
1 1

25

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

FIFO Controller (SV, 1/3)

module fifo_ctrl #(parameter A_WIDTH=4)
(clk, reset, rd, wr, empty, full, w addr, r_addr);

input 1logic clk, reset, rd, wr;
output logic empty, full;
output logic [A WIDTH-1:0] w_addr, r_addr;

// next state signal declarations

logic [A WIDTH-1:0] rd_ptr, rd ptr next;
logic [A WIDTH-1:0] wr_ptr, wr ptr next;
logic empty next, full next;

// output assignments
assign w_addr = wr_ptr;
assign r_addr = rd_ptr;

// [continued on next slide...]

27

YA UNIVERSITY of WASHINGTON

FIFO Controller (SV, 2/3)

LO4: Memory Il

EE/CSE371, Spring 2024

if (reset)
begin
wr_ptr
rd_ptr
full
empty
end
else
begin
wr_ptr
rd_ptr
full
empty
end

// fifo controller Llogic
always ff @(posedge clk) begin

e \woe

oo

R OO
o

oo

wr_ptr_next;
rd_ptr_next;
full next;

empty next;

// [continued on next slide...]

28

YA UNIVERSITY of WASHINGTON

LO4: Memory Il

FIFO Buffer (SV)

EE/CSE371, Spring 2024

module fifo #(parameter D WIDTH=8, A WIDTH=4)

input 1logic clk, reset, rd, wr;

(clk, reset, rd, wr, empty, full, w data, r_data);

w_data r_data

w_data

output logic empty, full;

w_en

input logic
output logic

[D_ WIDTH-1:0] w_data;
[D_ WIDTH-1:0] r_data;

o w_addr

> register file

r_addr e

r_

// signal declarations

w_addr r_addr

rd

Wr

logic [A WIDTH-1:0] w_addr, r_addr;

] W

-—

full -

logic w_en;

// enable write only when FIFO 1s not full
assign w en = wr & (~full | rd);

// lnstantiate FIFO controller and register file
fifo ctrl #(A WIDTH) control (.*);
reg file #(D_WIDTH, A WIDTH) mem (.*);

endmodule

full empty

FIFO

P> control circuit

-

en

Jata

npty

30

YA UNIVERSITY of WASHINGTON L04: Memory II

EE/CSE371, Spring 2024

Memory Controllers

+ A memory controller is an interface circuit between
user logic and the physical memory device

= Abstracts away details of physical memory device while
providing a consistent interface to the user

" The FIFO controller we just discussed allows a user to

interface with the register file we implemented on the
FPGA’s internal memory module

+» Memory controllers are found with all kinds of
memory

" Your DE1-SoC contains memory controllers for SDRAM and

DDR3 (and controllers for a bunch of other things like USB,
VGA, PS/2, 12C)

31

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

DE1-SoC Memory Revisited

Host computer
) r[\/- _
L | DEI-SoC LE USB | | | T

- Blaster Audio VGA vV
Peripherals Board CODEC DAC Decoder

ARM
Ports Cortex A9 ITAG | | NiosTI Audio Video-out] [Video-in PS/2
MPCore ports @) port port port ports
FPGA Bridges
Cyclone V Cyclone V .
Timers HPS Timers FPGA On-chip
memory
Port Port DDR3 Parallel Parallel Port SDRAM port | | Parallel
port ports ports port ports
DDR3 SDRAM
G-Sensor LEDG chips SWo LEDRy.g] chip IrDA Expansion

KEY KEY; HEX5-HEX0 ADC ports

7-Segment

Figure 1. Block diagram of the DE1-SoC Computer. 32

YA UNIVERSITY of WASHINGTON LO4: Memory Il EE/CSE371, Spring 2024

SDRAM Controller

FPGA

— . —
N transaction command physical [
user logic management . . : :

Lo engine interface

circuit
SDRAM

clock management ——v

+» High-performance controllers are very complex!
= Design depends on individual FPGA and SDRAM devices
= Usually constructed with vendor-supplied IP core

33

