
1

UW Student
EE/CSE 371
January 4, 2021
Sample Lab Report

Design Procedure

In this lab we were tasked with building a two-player game of tug-of-war game. Player 1 (right) uses
 and the Player 2 (left) uses to pull a light using the display, much like the flag tied

to a rope. When the light goes past the farthest left or right side of the display, the winning player
is shown on the display. is used as the reset signal.

Task #1

Key presses are asynchronous inputs that usually last longer than one clock cycle. To handle these
logical issues, we created a module that passes these inputs through a two-DFF synchronizer (not
shown) to the finite state machine (FSM) in Figure 1 that pulses high for a single clock cycle when they
key is initially pressed. Note that DE1-SoC signals are active-low so a value of 0 means pressed.

Figure 1: The Mealy FSM for a portion of the module. The active-low input comes from a synchronizer and

the output represents a single pulse for each time the key has been pressed (and held).

Task #2

To control the state of the LEDs, we created two very similar modules (both represented in Figure 2):
one for the center/starting LED and one for the normal/other LEDs that only differ in reset behavior.

Figure 2: The Moore FSM for the and modules, which only differ in reset state. and are the left

and right key presses. and represent if the left and right neighboring lights are on.

The FSM in Figure 2 relies on the following behavior:

• If unlit, the LED will only turn on if one of its neighbors is on and there is a tug in its direction.

• If lit, the LED will turn off if there is a tug in either direction.

• A tug is only registered if one player tugs and the other does not (i.e., L⊕ R).

• Only one LED can be on at a time so we ignore the and inputs (i.e., assume them to be 0)
in the Lit state.

Unpressed Pressed

Reset

1/0

0/0

0/1

1/0

Unlit Lit

Reset
(normal)

else

L⊕ R

(NL ⋅ Lത ⋅ R) + (NR ⋅ L ⋅ Rഥ)

Reset
(center)

else

The lab report should contain the
sections listed in the lab handout.

Included images
should be titled
with figure labels.

A good way to divide each section is into subsections by task.

If signal names are
not immediately
obvious, they should
be explained.

2

Task #3

The final task was to display which player had won the game on the 7-segment/ displays. We
created a module to determine a winner when one of the outermost LEDs (= far left, = far right) is
lit and there is tug off of the play field. To ensure that the game ends/freezes once there is a winner, we
added state as shown in Figure 3.

Figure 3: The Moore FSM for the module. HEX5 is used for the output. The “*” transition means regardless of inputs.

Tester Module

Although not explicitly asked for in the lab specification, we decided to create an additional module for
testing. This module takes the current value of every LED in the playfield and outputs
the number of the lit LED, which will allow us to replace the individual signals and simplify the
ModelSim wave view. This module is purely combinational logic with the following code:

Figure 4: Code for the module used for testing.

Overall System

Figure 5: Top-level block diagram of the Tug of War system.

P2 Win

"2" on HEX5

P1 Win
"1" on HEX5

Reset

FR ⋅ Lത ⋅ R

Game On
HEX5 off

FL ⋅ L ⋅ Rഥ
else

Include snippets of code where helpful.
Unfortunately, this is not a good example.

Make sure that signals are labeled
and port directions are indicated.

3

The block diagram of the system as a whole can be seen in Figure 5, which comprises nine total modules
of five different types. The output of is left unconnected as it is only used for testing. None
of the modules instantiate internal submodules. The disconnected red arrows are assumed to be
connected to the clock () and reset () inputs and apply to all sequential modules.

Results

Our system is a 2-player tug of war game with a lit LED representing the 'flag' that starts in the middle of
the 'rope.' Players pull the flag towards their side by pressing and releasing pushbuttons. When the flag
is pulled off of the side of the playfield, the corresponding player wins and their player number (1 or 2) is
shown on a hex display. We decided to make the system freeze (i.e., pulling inputs are ignored) after a
win until a reset signal is seen.

singlePress

Figure 6: The ModelSim waveform of the module.

Here, is the key value (active-low) and ff2 is the output of the second DFF of our synchronizer, which
is the input to our FSM (Figure 1). In this testbench, we show presses of duration 1 (starting at 30
ps), 2 (70 ps), 3 (130 ps), and 4 (210 ps) clock cycles. These each produce a one clock cycle pulse in
that is delayed by two clock cycles (starting at 70, 110, 1 70, and 250 ps).

winner

Figure 7: The ModelSim waveforms (split into two images for clarity) of the module.

Notice how all signal names are clearly visible and large enough
to be read, and that each signal’s value at the cursor is displayed.

The overview briefly describes what the final system is designed to do (often
paraphrased from the spec) and the unspecified design decisions that you made.

4

In the upper image, we start in the “Game On” state (==) and try all input combinations with FLതതത,
ordered such that only the last combination is the only one that actually causes a win (FR ⋅ Lത ⋅ R at the
cursor at 168 ps). We then see the transition to the “P1 Win” state (==) and verify that we are
outputting a “1” to the 7seg (recall that the segments are active-low). We then try all 16 input
combinations to show that we remain stuck in the “P1 Win” state.

After resetting (lower image), we then try all new input combinations with FL, with the last one causing
a win (FL ⋅ L ⋅ Rഥ at the cursor at 608 ps). We then see the transition to the “P2 Win” state (==) and
verify that we are outputting a “2” to the 7seg. We then try all 16 input combinations to show that we
remain stuck in the “P2 Win” state.

normalLight/centerLight

Figure 8: The ModelSim waveform for both the (n_light) and (c_light) modules.

The testbench was designed from the perspective of the module:

• After the reset, starting at 10 ps, we try all combinations of L and R when NLതതതത ⋅ NRതതതത, which should
result in no change to .

• Then, starting at 90 ps, we try all combinations of L and R when NLതതതത ⋅ NR, ordered such that the
last one turns on (NR ⋅ L ⋅ Rഥ).

• With on (recall: we assume we must have NLതതതത ⋅ NRതതതത), we keep try the two combinations
that keep the light on, then shift off to the left.

• With back off, starting at 230 ps, we try all combinations of L and R when NL ⋅ NRതതതത,
ordered such that the last one turns on (NL ⋅ Lത ⋅ R).

• We then shift off to the right, completing the check of all valid input combinations when the
light is on (combined with the range 170 – 230 ps).

Note that correctly starts on after a reset and then turns off at 50 ps during the no-change
tests for . After this, it correctly follows the behavior of the rest of the way.

DE1_SoC

The top-level waveform is shown below in Figure 9. Note that the use of the output from the
 module here means that we don’t have to show – . Also recall that the use of

the module means that we have to introduce a pulsing behavior (press and then depress)
in our inputs and that the effects of those presses are delayed by two clock cycles.

After a reset (top image), we start with only the lit and off. We then go right by two to the
right end of the play field (). Then we go left all the way across the play field until a Player 2 win
(past , just past the 315 ps cursor). We reset again (middle image) and then go left by two to the
left end of the play field (). Now, on the way to a Player 1 win (past), we include both
players tugging (e.g., the 520 ps cursor). This means that, altogether, we’ve tested a left tug, right tug,

The goal of the top-level simulation is to verify the interconnections between your
modules – you’ve already shown each module working properly independently!

5

and both tug with every possible light state and correctly seen wins recorded (via changes) only
when expected.

Figure 9: The ModelSim waveform for the top-level module, split into three images for clarity.

As you can see, ModelSim waveforms can sometimes get a bit tedious to document and explain
and may not be a good fit for all applications. We will learn some other SystemVerilog
simulation tricks in this course to give you alternative ways of “proving” the correctness of your
modules, such as the function, which could provide output in the transcript window
like what’s shown below:

You should decide which method (or combination of methods) to use to best illustrate your
verification to the reader.

6

Flow Summary

Figure 10: The ModelSim Flow Summary of the compilation of the module.

Experience Report

I found this lab to be rather straightforward in what was expected and felt that the lab specification did
a decent job of guiding me through the lab. It took us a while to figure out that I would need to treat
the center LED and other LEDs differently. In addition, we mixed up which signals were active-low and
active-high in multiple places, particularly with the vs. signals and the display.

One trick that I found to be particularly useful was to start by implementing a smaller system and then
expanding it to what we were expected to accomplish. In practice, this mean that I first created a tug-of-
war system that only used 3 LEDs – a center LED and then one on each side. Once I had this working, it
was very easy and fast to add additional LEDs as all I had to do was instantiate more of the

 submodule.

This lab took me approximately 10 hours, broken down as follows:

• Reading – 30 minutes

• Planning – 30 minutes

• Design – 2 hours

• Coding – 5 hours

• Testing – 1 hour

• Debugging – 1 hour

Further Guidance for Lab Reports

• FSM diagrams, ASM/D charts, and block diagrams may be done on paper and scanned
into your report; however, they must be legible.

• Photographs of your computer screen will not be accepted in place of a screenshot.
• Although you are only expected to include ModelSim screenshots of important

modules in your lab report, all modules must have testbenches that accurately test
their expected functionality.

• All screenshots of ModelSim waveforms should be able to be replicated by the
Instruction Team without augmenting the module in any way.

