CSE 370 Solution Set #1
Winter 1999


Total Points 20

1) 1 Point: a. 1387
    b. 1001101001
    c. binary=1100 0100 0110 1011 decimal=50,283
    d. octal=1316 hexadecimal=2CE

2) 2 Points: a. 10000110
    b. 111
    c. 101010010

3) 1 Point: a. 100110
    b. 111111

4) 2 Points: a. 19
    b. -3
    c. -12
    d. -13
    b. 65,553

5) 1 Point: a. Largest = 2^16 - 1 = 65,535 Smallest = 0
    b. Largest = 2^15 - 1 = 32,767 Smallest = -2^15 = -32,768

6) 2 Points: Sign extend the most significant bit
    a. 00000101
    b. 11111011

7) 1 Point: One possible answer is...
    
    Ignore the numbers, they are just pinouts assigned by the schematic editor.

8) 2 Points: a. X'&Y' + X&Y + X'&Y
        X'&Y' + Y&(X + X')
        X'&Y' + Y&(1)
        X'&Y' + Y
       remember you can distribute across "OR" see Katz page 42
        (X' + Y)&(Y' + Y)
        (X' + Y)&(1)
        (X'+Y) 2 literals is minimized

    b. X&Z + (X&Z' + Y)' + Y'&Z + X&Y'&Z + X&Z' + X&Y&Z + X&Y'&Z'
          since X&Z + X&Y'&Z + X&Y&Z = X&Z
        X&Z + (X&Z' + Y)' + Y'&Z + X&Z' + X&Y'&Z'
          since X&Z' + X&Y'&Z' = X&Z'
        X&Z + (X&Z' + Y)' + Y'&Z + X&Z'
        X&Z + ((X&Z')'&Y') + Y'&Z + X&Z'
        X&Z + ((X' + Z)&Y') + Y'&Z + X&Z'
        X&Z + X'&Y' + Z&Y' + Y'&Z + X&Z'
        X&Z + X'&Y' + Y'&Z + X&Z'
        X&Z + X&Z' + X'&Y'+ Y'&Z
        X&(Z + Z') + X'&Y' + Y'&Z
        X + X'&Y' + Y'&Z
        (X + X')&(X + Y') + Y'&Z
        X + Y' + Y'&Z
        (X + Y') 2 literals is minimized
       Hint: You can always work out the truth table to verify if your simplified function is the same as the original.

9) 1 Point: a. F' = (X' + Y + Z)&(X' + Y + Z')&(X' + Y' + Z')
       simplifies to (X' + Y&Z') 3 literals is minimized
    b. G' = (X' + Y + Z')&(X' + Y')
       simplifies to (X' + Y'&Z') 3 literals is minimized

10) 2 Points:
A B | XOR
--------
0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 0

To understand what 2 input functions you can't make with only 2-input XOR gates you should first realize that there are 16 possible 2 input functions, see Katz page 44.
There were 2 ways to look at the problem. If you assume your only inputs are A and B, then the only functions you can make with just XOR gates are A, B, A ^ B (A xor B), and A ^ A=0. The other 12 functions you can't make.
However if you assumed you could use ground and +5volts as 0 and 1 inputs to the XOR gates then you can also make 1, A ^ 1=A', B ^ 1=B', and (A ^ B) ^ 1=A xnor B. The other 8 functions you still can't make.

11) 1 Point:
A1 A0 B1 B0 | S2 S1 S0
------------------------------
0 0 0 0 | 0 0 0
0 0 0 1 | 0 0 1
0 0 1 0 | 0 1 0
0 0 1 1 | 0 1 1
0 1 0 0 | 0 0 1
0 1 0 1 | 0 1 0
0 1 1 0 | 0 1 1
0 1 1 1 | 1 0 0
1 0 0 0 | 0 1 0
1 0 0 1 | 0 1 1
1 0 1 0 | 1 0 0
1 0 1 1 | 1 0 1
1 1 0 0 | 0 1 1
1 1 0 1 | 1 0 0
1 1 1 0 | 1 0 1
1 1 1 1 | 1 1 0


12) 1 Point: Arizona State University- neural network speech recognition

13) 1 Point: B.S. in Computer Science with high distinction from University of Colorado

14) 1 Point: University of California Berkeley

15) 1 Point: True