Computer organization

Computer design — an application of digital logic design procedures
Computer = processing unit + memory system
Processing unit = control + datapath

I I B |

Control = finite state machine
O inputs = machine instruction, datapath conditions
O outputs = register transfer control signals, ALU operation codes
O instruction interpretation = instruction fetch, decode, execute

O Datapath = functional units + registers
O functional units = ALU, multipliers, dividers, etc.
O registers = program counter, shifters, storage registers

CSE 370 - Spring 1999 - Computer Organization - 1

Structure of a computer

O Block diagram view

Processor M
central processing m
unit (CPU)

control signals
data conditions,
instruction unit execution unit

— instruction fetch and — functional units
interpretation FSM and registers

CSE 370 - Spring 1999 - Computer Organization - 2

Registers

O Selectively loaded — EN or LD input
O Output enable — OE input

O Multiple registers — group 4 or 8 in parallel

o
m

|w/
Y

CSE 370 - Spring 1999 -

OE asserted causes FF state to be
connected to output pins; otherwise they
are left unconnected (high impedance)

LD asserted during a lo-to-hi clock
transition loads new data into FFs

Computer Organization - 3

Register transfer

O Point-to-point connection
O dedicated wires

O muxes on inputs of
each register

0 Common input from multiplexer

O load enables
for each register

O control signals
for multiplexer

O Common bus with output enables

O output enables and load
enables for each register

CSE 370 - Spring 1999 -

YYYY YYYY YYYY yvvYy
[Mux] [MUx] [MUX] [(MUX]

v v v v
Lrs | [t | [rd] [R4
v v v v
[MUX |
¥
v v v v
Lrs | Lt | [rd] [R4|
: : : :
BUS

Computer Organization - 4

Register files

O Collections of registers in one package
O two-dimensional array of FFs
O address used as index to a particular word
O can have separate read and write addresses so can do both at same

time
O 4 by 4 register file
O 16 D-FFs
O organized as four words of four bits each —[RE
O write-enable (load) _ ER
O read-enable (output enable) — lwe 3
==
0_
— D3
——1D2
— 1Dl
——DO0

CSE 370 - Spring 1999 - Computer Organization - 5

Memories

O Larger collections of storage elements
O implemented not as FFs but as much more efficient latches
O high-density memories use 1 to 5 switches (transitors) per memory bit
0O Static RAM — 1024 words each 4 bits wide
O once written, memory holds forever (not true for denser dynamic RAM)
O address lines to select word (10 lines for 1024 words)
O read enable

O same as output enable — "
O often called chip select — "R
O permits connection of many] ﬁg 103——
chips into larger array —] % %8%_
O write enable (same as load enable) — ﬁg 00—
O bi-directional data lines —|A3
O output when reading, input when writing _] g%
— A0

CSE 370 - Spring 1999 - Computer Organization - 6

Instruction sequencing

O Example — an instruction to add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)
0 Step 1: get the ADD instruction from memory into an instruction register
O Step 2: decode instruction
O instruction in IR has the code of an ADD instruction
O register indices used to generate output enables for registers Rx and Ry
O register index used to generate load signal for register Rz
O Step 3: execute instruction
O enable Rx and Ry output and direct to ALU
O setup ALU to perform ADD operation
O direct result to Rz so that it can be loaded into register

CSE 370 - Spring 1999 - Computer Organization - 7

Instruction types

O Data manipulation
O add, subtract
O increment, decrement
O multiply
O shift, rotate
O immediate operands
O Data staging
O load/store data to/from memory
O register-to-register move
O Control
O conditional/unconditional branches in program flow
O subroutine call and return

CSE 370 - Spring 1999 - Computer Organization - 8

Elements of the control unit (aka instruction unit)

O Standard FSM elements

O state register

O next-state logic

O output logic (datapath/control signalling)

O Moore or synchronous Mealy machine to avoid loops unbroken by FF
O Plus additional "control" registers

O instruction register (IR)

O program counter (PC)
O Inputs/outputs

O outputs control elements of data path

O inputs from data path used to alter flow of program (test if zero)

CSE 370 - Spring 1999 - Computer Organization - 9

Instruction execution

O Control state diagram (for each diagram) Reset

0 reset
O fetch instruction

Initialize
D decode Machine
0 execute

O Instructions partitioned into three classes
O branch
O load/store
O register-to-register

O Different sequence through

diagram for each
instruction type

Register-
to-Register

Branch Branch
Taken Not Taken

CSE 370 - Spring 1999 - Computer Organization - 10

Data path (heirarchy)

O Arithmetic circuits constructed in hierarchical and iterative fashion
O each bit in datapath is functionally identical Cin
O 4-bit, 8-bit, 16-bit, 32-bit datapaths

Ain
Bin FA /<> Sum
Cout
Ain Sum
B | HA
7 HA l_D— Cout

T
>
-

CSE 370 - Spring 1999 - Computer Organization - 11

A
B

Data path (ALU)

O ALU block diagram
O input: data and operation to perform
O output: result of operation and status information

Operation ? »

CSE 370 - Spring 1999 - Computer Organization - 12

Data path (ALU + registers)

O Accumulator
O special register
O one of the inputs to ALU
O output of ALU stored back in accumulator
0O One-address instructions
O operation and address of one operand 16
O other operand and destination)f

is accumulator register |

O AC <- AC op Meml[addr]
O "single address instructions”

(AC implicit operand) oP

—OP \
O Multiple registers }
O part of instruction used N 16 I
C oz

to choose register operands

CSE 370 - Spring 1999 - Computer Organization - 13

Data path (bit-slice)

O Bit-slice concept — iterate to build n-bit wide datapaths

A 4 I A I A 4 I
CO «—ALU « Cl CO «—ALU [« < ALU [«
I | I

— AC > — AC > — AC >
— RO [, — RO [,| > RO [,
> s [> > s [> > rs [>
— ot [, — ot [ot [
> d [> > d [> > rd [N

from from from
<_memory <_memory "_memory

1 bit wide 2 bits wide

CSE 370 - Spring 1999 - Computer Organization - 14

(¢]]

Instruction path

O Program counter
O keeps track of program execution
O address of next instruction to read from memory
0 may have auto-increment feature or use ALU
O Instruction register
O current instruction
O includes ALU operation and address of operand
O also holds target of jump instruction
O immediate operands
O Relationship to data path
O PC may be incremented through ALU
O contents of IR may also be required as input to ALU

CSE 370 - Spring 1999 - Computer Organization - 15

Data path (memory interface)

O Memory
O separate data and instruction memory (Harvard architecture)
O two address busses, two data busses
O single combined memory (Princeton architecture)
O single address bus, single data bus
O Separate memory
O ALU output goes to data memory input
O register input from data memory output
O data memory address from instruction register
O instruction register from instruction memory output
O instruction memory address from program counter
O Single memory
O address from PC or IR
O memory output to instruction and data registers
O memory input from ALU output

CSE 370 - Spring 1999 - Computer Organization - 16

Block diagram of processor

O Register transfer view of Princeton architecture
O which register outputs are connected to which register inputs
O arrows represent data-flow, other are control signals from control FSM
O MAR may be a simple multiplexer rather than separaltoe‘zil dregister
O MBR is split in two (REG 'and IR) ¢16 — path
O load control for each register

stgr%:
P Data Memo
([L6-bit words)

Control
FSM

MAR
Y

CSE 370 - Spring 1999 - Computer Organization - 17

Block diagram of processor

O Register transfer view of Harvard architecture
O which register outputs are connected to which register inputs
O arrows represent data-flow, other are control signals from control FSM
O two MARs (PC and IR) load

16 pa'th

O two MBRs (REG and IR) i v

O load control for each register stor

paﬂ%l>
Control
FSM
data
nst Memor
8-bit words)
addr

A

CSE 370 - Spring 1999 - Computer Organization - 18

A simplified processor data-path and memory

Princeton architecture
Register file
Instruction register

I I B |

PC incremented
through ALU

O Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)
O really a 32 bit
machine
O we'll do a 16 bit
version

memory has only 255 words __,, []

with a display on the last one

e
ST]
r T
T
TN
o | .

CSE 370 - Spring 1999 - Computer Organization - 19

Processor control

O Synchronous Mealy machine

O Multiple cycles per instruction

1- TErEt

0n-

neg —

TEIC

In:t '_

Controller Tie gEr dEH
ELUmaER
FCmaEN

i

mr

Frld
Fl:rel
wrEegiel
rllataiel
regirite
IEl14d
MEE14

TeEret

neg

EETO

Inst

srcEL
srcEl
rrcd

FAN

op f—

|, BegBwdER
— ALl
| DlwaEH
1

1 mIr
|, Pr14

| — FC=zel

| — wrBegiel
|— mrDataiel
| regilrite
— IE1d

— MER1d

op

| srcEl
|, srcE0

— srcd

||:1]r.

[An]

CSE 370 - Spring 1999 - Computer Organization - 20

Processor instructions

O Three principal types (16 bits in each instruction)

type op rs rt rd funct
R(egister) 3 3 3 3 [4
I{(mmediate)| 3 3 3 7
J(ump) 3 13
O Some of the instructions

add 0 rs rt rd 0 rd=rs+rt
sub 0 rs rt rd 1 rd=rs-rt

R | and 0 rs rt rd 2 rd=rs&rt
or 0 rs rt rd 3 rd=rs|rt
slt 0 rs rt rd 4 rd = (rs <rt)
Iw 1 rs rt offset rt = mem[rs + offset]
sw 2 rs rt offset mem([rs + offset] = rt

I beq 3 rs rt offset pc = pc + offset, if (rs == rt)
addi 4 rs rt offset rt = rs + offset

J j 5 target address pc = target address
halt 7 - stop execution until reset

CSE 370 - Spring 1999 - Computer Organization - 21

Tracing an instruction's execution

O Instruction: r3=rl+1r2
R [0O [rs=rl | rt=r2 | rd=r3 [funct=0 |
O 1. instruction fetch
move instruction address from PC to memory address bus
assert memory read
move data from memory data bus into IR
configure ALU to add 1 to PC
configure PC to store new value from ALUout
0 2. instruction decode
O op-code bits of IR are input to control FSM
O rest of IR bits encode the operand addresses (rs and rt)
O these go to register file

OoOoogo

CSE 370 - Spring 1999 - Computer Organization - 22

Tracing an instruction's execution (cont’d)

O Instruction: r3=rl+1r2
R [0 [rs=r1 | rt=r2 | rd=r3 [funct=0 |
O 3. instruction execute
O set up ALU inputs
O configure ALU to perform ADD operation
O configure register file to store ALU result (rd)

CSE 370 - Spring 1999 - Computer Organization - 23

Tracing an instruction's execution (cont’d)

rarDlataiel
regirite mrFRegiel

regirite [wrRegiel
wrlatadel

el Irict Begh J
ALVt Red

MR File %

J_:n:

S

Lot

CSE 370 - Spring 1999 - Computer Organization - 24

Tracing an instruction's execution (cont’d)

O Step 2

FLsel reset

Frld

PLrel reset

Inst

PC

14 g

wrlataiel

]'mr
u
=

IRl4
i

-
mdbus I i—

J_:l}t

]‘HBRld

el
-
mdbus

FAE i

J_:lk

ALVcast AL

I_: 1k

CSE 370 - Spring 1999 - Computer Organization - 25

v to controller

Tracing an instruction's execution (cont’d)

O Step3

FCsel reset PLCL4

PLzel reset 1d
Inst

gl
:

]’mr
u
g

IEl4d
4

-

mdbas In,

J_:lk

'|'HE'Rld

o
-
mdbus

MEF oy

J_:lk

CSE 370 - Spring 1999 - Computer Organization - 26

Register-transfer-level description

O Control
O transfer data between registers by asserting appropriate control signals

O Register transfer notation - work from register to register
O instruction fetch:
mabus —~ PC; —move PC to memory address bus (PCmaEN, ALUmaEN)
memory read; — assert memory read signal (mr, RegBmdEN)
IR —~ memory; -load IR from memory data bus (IRId)
op ~ add —send PC into A input, 1 into B input, add
(srcA, srcBO, scrB1, op)
PC — ALUout - load result of incrementing in ALU into PC (PCld, PCsel)
O instruction decode:
IR to controller
values of A and B read from register file (rs, rt)
O instruction execution:

op ~ add - send regA into A input, regB into B input, add
(srcA, srcBO, scrB1, op)
rd —« ALUout - store result of add into destination register

(regWrite, wrDataSel, wrRegSel)

CSE 370 - Spring 1999 - Computer Organization - 27

Register-transfer-level description (cont’d)

O How many states are needed to accomplish these transfers?
O data dependencies (where do values that are needed come from?)
O resource conflicts (ALU, busses, etc.)
O Inour case, it takes three cycles
O one for each step
O all operation within a cycle occur between rising edges of the clock
O How do we set all of the control signals to be output by the state machine?
O depends on the type of machine (Mealy, Moore, synchronous Mealy)

CSE 370 - Spring 1999 - Computer Organization - 28

Review of FSM timing

fetch decode execute
A A A
| W step 1 ﬂm step 2 ﬂm step 3 ﬂm
IR « mem[PC]A A —rs rd - A+B
T T PC « PC+1; B 1t T T T

to configure the data-path to do this here,
when do we set the control signals?

CSE 370 - Spring 1999 - Computer Organization - 29

FSM controller for CPU (skeletal Moore FSM)

O First pass at deriving the state diagram (Moore machine)
O these will be further refined into sub-states

reset

instruction
fetch

instruction
decode

instruction
execution

CSE 370 - Spring 1999 - Computer Organization - 30

FSM controller for CPU (reset and inst. fetch)

O Assume Moore machine

O outputs associated with states rather than arcs
O Reset state and instruction fetch sequence
O On reset (go to Fetch state)

O start fetching instructions

O PC will set itself to zero

reset
mabus — PC; \
memory read; instruction
IR — memory data bus; fetch
PC -« PC+1;

CSE 370 - Spring 1999 - Computer Organization - 31

FSM controller for CPU (decode)

O Operation decode state
O next state branch based on operation code in instruction
O read two operands out of register file
O what if the instruction doesn't have two operands?

5 instruction

branch based on value of decode

Inst[15:13] and Inst[3:0]

@000

CSE 370 - Spring 1999 - Computer Organization - 32

FSM controller for CPU (instruction execution)

O For add instruction
O configure ALU and store result in register

rd - A+B

O other instructions may require multiple cycles

instruction
execution

CSE 370 - Spring 1999 - Computer Organization - 33

FSM controller for CPU (add instruction)

O Putting it all together
and closing the loop

O the famous

instruction reset

fetch \4 o ctructi
INStruction

decode fetch

execute

cycle

) instruction
% decode

00.

CSE 370 - Spring 1999 - Computer Organization - 34

instruction
execution

FSM controller for CPU

O Now we need to repeat this for all the instructions of our processor
O fetch and decode states stay the same
O different execution states for each instruction

O some may require multiple states if available register transfer paths
require sequencing of steps

CSE 370 - Spring 1999 - Computer Organization - 35

