Sequential logic implementation

0 Sequential circuits
O primitive sequential elements
O combinational logic

O Models for representing sequential circuits
O finite-state machines (Moore and Mealy)
O representation of memory (states)
O changes in state (transitions)
O Basic sequential circuits
O shift registers
O counters
O Design procedure
O state diagrams
0 state transition table
O next state functions
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Abstraction of state elements

O Divide circuit into combinational logic and state
O Localize the feedback loops and make it easy to break cycles
O Implementation of storage elements leads to various forms of sequential logic
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—_— —>
Inputs ' combinational , Outputs
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LI
Storage Elements
]
L
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Forms of sequential logic

O Asynchronous sequential logic — state changes occur whenever state inputs
change (elements may be simple wires or delay elements)

O Synchronous sequential logic — state changes occur in lock step across all
storage elements (using a periodic waveform - the clock)

—» »> » -
R —— > > —
——3 > < —
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Clock
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Finite state machine representations

O States: determined by possible values in sequential storage elements
O Transitions: change of state
O Clock: controls when state can change by controlling storage elements

O Sequential logic
O sequences through a series of states
O based on sequence of values on input signals
O clock period defines elements of sequence
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Example finite state machine diagram

O Combination lock from introduction to course

not new not new not new
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Can any sequential system be represented
with a state diagram?

O Shift register

. ouT1 ouT2 OouT3
O input value shown

on transition arcs ‘ ‘ J
O output values shown ~ IN PO PP

within state node CLK I L '

CSE 370 - Spring 1999 - Sequential Logic Implementation - 6




Counters are simple finite state machines

O Counters

O proceed through well-defined sequence of states in response to enable
O Many types of counters: binary, BCD, Gray-code

0O 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...

0O 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

o 0 0

@ 3-bit up-counter @

111)< @< 101
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How do we turn a state diagram into logic?

O Counter
O 3 flip-flops to hold state
O logic to compute next state
O clock signal controls when flip-flop memory can change
O wait long enough for combinational logic to compute new value
O don't wait too long as that is low performance

ouT1 ouT2 OouT3

B B |
A LD A
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FSM design procedure

O Start with counters
O simple because output is just state
O simple because no choice of next state based on input

O State diagram to state transition table

O tabular form of state diagram

O like a truth-table
O State encoding

O decide on representation of states

O for counters it is simple: just its value
O Implementation

O flip-flop for each state bit

O combinational logic based on encoding
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FSM design procedure: state diagram to
encoded state transition table

O Tabular form of state diagram
O Like a truth-table (specify output for all input combinations)
O Encoding of states: easy for counters — just use value

current state next state

@ @ @ 0 | 000 001 | 1
1 001 010 2

2 | 010 011 3

3-bit up-counter @ 3 011 100 4

4 100 101 5

<_ 5| 101 110 | 6

6 110 111 7

7 111 000 0
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Implementation

O D flip-flop for each state bit i
notation to show

O Combinational logic based on encoding function represent
input to D-FF
3 C2 Cl|N3 N2 N1
0 0 0o o 1
0 0 1 (0o 1 o0 N1 :=Cl'
o 1 o0 lo 1 1 N2 := gcz‘ +C 2c1'c2
= Xor
0 1 141 0 0 N3 := C1C2C3' + C1'C3 + C2'C3
1 0 01 0 1 := C1C2C3' + (C1' + C2)C3
1 0 1|1t 1 o0 1= (C1C2) xor C3
1 1 0|1 1 1
1 1 11]0o 0 O
N3 Ik, N2 Ik, N1 c3
0 0 [ 1 T 0 1 1 0 [ 1 1 1 1 ]

cif o |(1]| o 1] af 1] o] o|[1] ctlo] o] o

C2 C2 Cc2
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Implementation (cont'd)

O Programmable logic building block for sequential logic
O macro-cell: FF + logic
0 D-FF
O two-level logic capability like PAL (e.g., 8 product terms)

\\_,—/’A‘\s. T TN T T \/

5 |
—\
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Another example

O Shift register
O input determines next state

In CI C2 C3|NL N2 N3

0Jo 0 0o 0 o

0|/o0 0o 1]0o 0 O

0o|lo 1 0o o 1

0/o 1 1]0o o0 1

0|t o o01]o 1 o

0|t 0o 1]o 1 o0

0|t 1 0o 1 1

0|t 1 1]o 1 1

1 {0 0 01 0 O N1 :=1In

10 0 1]1 0 o N2 :=Cl

1 /0 1 0|1 0 1 N3 :=C2 ouT1 ouT2 OouUT3
1|0 1 1|1 0 1

1 {1t o o1 1 0O ‘ ‘ J
1|1 0 11]1 1 o0 IN D Q——D Q——D QF
1|t 1 01 1 1 L ; .
11t 1 111 1 1 CLK
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More complex counter example

O Complex counter
O repeats 5 states in sequence
O not a binary number representation

O Step 1: derive the state transition diagram
O count sequence: 000, 010, 011, 101, 110

O Step 2: derive the state transition table from the state transition diagram

Present State| Next State
C B A |C+ B+
1

note the don't care conditions that arise from the unused state codes
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More complex counter example (cont’d)

O Step 3: K-maps for next state functions

C+ C B+ C A+
0| 0] 0] X 110} X 0|10
Al x| 1] x| 1 Al x|o]| x| 1 Al x| 1]|X
B B B
C+:=A
B+ :=B' + AC
A+ :=BC
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Self-starting counters (cont’d)

O Re-deriving state transition table from don't care assignment

C+ C B+ C A+

0 0 0 0 1 1 0 1 0 1 0
Al1l 1 1 1 Al1]| O 0 1 AlJoOo | 1 0

B B B
Present State| Next State
8 3 é C+ B+ A+
1

=

0 1 o0 1 1

o 1 111 0 1

i 0 0

i 0 1|1 1 0

1 1 0|0 0 0

1 1 1
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Self-starting counters

O Start-up states
O at power-up, counter may be in an unused or invalid state
O designer must guarantee that it (eventually) enters a valid state
O Self-starting solution
O design counter so that invalid states eventually transition to a valid state
O may limit exploitation of don't cares

implementation
on previous slide
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State machine model

O Values stored in registers represent the state of the circuit
O Combinational logic computes:
0 next state
O function of current state and inputs
0 outputs
O function of current state and inputs (Mealy machine)
O function of current state only (Moore machine)

Outputs

Current State
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State machine model (cont’d)

O States: S1, S2, ..., Sk
O Inputs:I1,12,...,Im
0 Outputs: 01, 02, ..., On
O Transition function: Fs(Si, Ij)
O Output function: Fo(Si) or Fo(Si, 1j)
Outputs
Inputs
Next State
Next State

State __ X X X X X
Cock 0 + 1 % 2 % 3 4+ 4 ¢t 5

CSE 370 - Spring 1999 - Sequential Logic Implementation - 19

Example: ant brain (Ward, MIT)

Sensors: L and R antennae, 1 if in touching wall

Actuators: F - forward step, TL/TR - turn left/right slightly 1ot
Goal: find way out of maze 8
Strategy: keep the wall on the right

i
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Ant behavior

—> . .
A: Following wall, touching / B: Following wall, not touching
Go forward, turning Go forward, turning right
left slightly slightly
+——
{ - D: H I
: Hit wall again

C: Break in wall Back to stgate A

Go forward, turning_______

right slightly

Turn left until... state B

E: Wall in front __ » B F: e are here, same as
~00

G: Turn left until...
/ LOST: Forward until we
touch something ~
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Designing an ant brain

O State diagram
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Synthesizing the ant brain circuit

O Encode states using a set of state variables
O arbitrary choice - may affect cost, speed
O Use transition truth table
O define next state function for each state variable
O define output function for each output
O Implement next state and output functions using combinational logic
O 2-level logic (ROM/PLA/PAL)
O multi-level logic
O next state and output functions can be optimized together
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Transition truth table

O Using symbolic states L'R
and outputs

state L R next state ,
LOSTO 0 | LOST R
LOST- 1 | E/G F

LOST1 - | E/G F

A 00| B TL F

A 01| A TLF

A 1 -| E6 TLF

B -0/ C TR, F

B -1/ A TR, F
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Synthesis

O 5 states : at least 3 state variables required (X, Y, Z) LOST - 000
O state assignment (in this case, arbitrarily chosen) E/G -001
A - 010
B -011
C - 100
state L R next state outputs it now remains
X.Y,Z (X, Y, 2 F TR Tl «— to synthesize
00000 000 10 0 these 6 functions
000 01 001 10 0
010 00 011 10 1
010 01 010 10 1
01010 001 10 1
010 11 001 10 1
01100 100 11 0
01101 010 11 0
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Synthesis of next state and output functions

state inputs| next state outputs

XYZ LR Xt Y+, Z+ F TR TL

00000 000 10 0

000 -1 001 10 0

000 1 - 001 10 0

00100 011 00 1

001 -1 010 00 1 e.g.

001 1 - 010 00 1

01000 | 011 10 1 TR=X+YZ
01001 010 10 1 X*=XR'+YZR =R TR
010 1 - 001 10 1

011 -0 100 11 0

011 -1 010 11 0

100 - 0 100 11 0

100 -1 010 11 0
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Circuit implementation

O Outputs are a function of the current state only - Moore machine

Current State
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Don’t cares in FSM synthesis

0 What happens to the "unused" states (101, 110, 111)?

O They were exploited as don't cares to minimize the logic
O if the states can't happen, then we don't care what the functions do
O if states do happen, we may be in trouble

Ant is in deep trouble

if it gets in this state/
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State minimization

O Fewer states may mean fewer state variables
O High-level synthesis may generate many redundant states

O Two state are equivalent if they are impossible to distinguish from the
outputs of the FSM, i. e., for any input sequence the outputs are the same

O Two conditions for two states to be equivalent:

O 1) output must be the same in both states
O 2) must transition to equivalent states for all input combinations
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Ant brain revisited

O Any equivalent states?
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New improved brain

O Merge equivalent B and C states
O Behavior is exactly the same as the 5-state brain
O We now need only 2 state variables rather than 3

L'R
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New brain implementation
state inputs| next state outputs
XY LR | XY FTRTL v+ X yy X
00 00 |00 100 UEILE ELE
00 - 1 01 100 0111‘R 1000‘R
00 1. 01 10 0 I_‘0110 I_‘1001
o/ 1] o]0 1] o[ o] 1
01 00 11 001 —~ —~
01 -1 10 001
01 1- 10 001
10 00 11 101 F X TR X TL X
10 01 10 10 1 1[0 1] 1 0| 0] 1[0 ol 1/0[1
10 1 - 01 10 1 1011‘R 0010‘R 0101‘R
O L A Con g ueeE
11 -1 10 110 — — —
Y Y Y
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Mealy vs. Moore machines

O

Moore: outputs depend on current state only

O

Mealy: outputs may depend on current state and current inputs

O

Our ant brain is a Moore machine
O output does not react immediately to input change

O We could have specified a Mealy FSM
O outputs have immediate reaction to inputs
O as inputs change, so does next state, doesnt commit until clocking event

L'R/TLF
L/TL

react right away to leaving the wall

L'R/TR F

CSE 370 - Spring 1999 - Sequential Logic Implementation - 33

Specifying outputs for a Moore machine

O Output is only function of state
O specify in state bubble in state diagram
O example: sequence detector for 01 or 10

current | next
reset input state state output
1 - - A
0 0 A B 0
0 1 A C 0
0 0 B B 0
reset 0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1
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Specifying outputs for a Mealy machine

O Output is function of state and inputs
O specify output on transition arc between states
O example: sequence detector for 01 or 10

current | next
reset input state state output

1 - A 0
0 0 B 0
0 1 C 0
reset/0 0 0 B 0
0 1 C 1
0 0 B 1
0 1 C 0

OO0 mm> > |
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Comparison of Mealy and Moore machines

O Mealy machines tend to have less states
O different outputs on arcs (n”2) rather than states (n)

O Moore machines are safer to use
O outputs change at clock edge (always one cycle later)

O in Mealy machines, input change can cause output change as soon as
logic is done — a big problem when two machines are interconnected —
asynchronous feedback

O Mealy machines react faster to inputs
O react in same cycle — don't need to wait for clock

O in Moore machines, more logic may be necessary to decode state into
outputs — more gate delays after

—>
inputs  —

logic for
outputs

>
EEEEE—
EEEE——
combinational [~
logic for —>
nextstate  [—| 5

state feedback state feedback
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Mealy and Moore examples

O Recognize A,B =0,1
O Mealy or Moore?

>
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Mealy and Moore examples (cont’d)

O Recognize A,B = 1,0 then 0,1

O Mealy or Moore?
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Registered Mealy machine (really Moore)

O Synchronous (or registered) Mealy machine
O registered state AND outputs
O avoids ‘glitchy’ outputs
O easy to implement in PLDs

O Moore machine with no output decoding

O outputs computed on transition to next state rather than after entering
O view outputs as expanded state vector

]—» Outputs
Current State
CSE 370 - Spring 1999 - Sequential Logic Implementation - 39
Example: vending machine
O Release item after 15 cents are deposited
O Single coin slot for dimes, nickels
O No change
Reset
N_, Vendin
Coin Maching |_OPen | Release
Sensor D FSM Mechanism
Clock
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Example: vending machine (cont’d)

O Suitable abstract representation
O tabulate typical input sequences:
O 3 nickels
O nickel, dime
O dime, nickel
O two dimes
O draw state diagram:
O inputs: N, D, reset
O output: open chute
O assumptions:
O assume N and D asserted
for one cycle
O each state has a self loop
for N = D = 0 (no coin)
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Example: vending machine (cont’d)

0O Minimize number of states - reuse states whenever possible

present inputs next output
Reset state D N | state  open

06 0 0 06 0
0 1 5 0
1 0| 106 o0
101 | - -
5¢ 0 0 5¢ 0
0 1| 106 0
D 1 0| 15¢ 0
101 | - -
10¢ 0 0| 10¢ o0
0 1| 15 0
1 0| 156 0
D 11| - -
15¢ o2 1se 1

symbolic state table
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Example: vending machine (cont’d)

O Uniquely encode states

present state inputs next state output
Q1 Q0 D N D1 DO open
0 0 0 0 00 0
0 1 01 0
1 0 10 0
1 1 i -
0 1 0 0 01 0
0 1 10 0
1 0 11 0
1 1 - - -
1 0 0 0 1 0 0
0 1 11 0
1 0 11 0
1 1 - = -
1 1 - - 1 1 1
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Example: vending machine (cont’d)

O Mapping to logic o1 Q . Q open Q
o] oyi[ N oNi[ Yo o[ of1j o
NARE N N o] 1} N ol o[ 1] of|
ol X[ A X b xP xR X ol X[ X[ X[ x
RNy, oA\ H olol1fo
Qo Qo Q0
¥
. D1=QL+D+QON
X - - _'. -
Ty i 1 DO=Q0'N+QON+QLN+QL1D

OPEN = Q1 QO
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Example: vending machine (cont’d)

O One-hot encoding

present state  inputs |next state output
Q30Q2Q1Q0 D N D3 D2 D1 DO open
00 01 00 0001 0
01 0010 0
10 0100 0
1 1 - - = - -
00 10 00 00 10 0
01 0100 0
10 1 0 00 0
11 - - - - -
01 00 0 0 01 00 0
01 1 000 0
10 1 0 00 0
1 1 - - - - -
10 00 - - 1 000 1

DO =Q0D' N
DI=QON+QLD'N
D2=Q0D+QLN+Q2D'N
D3=QID+Q2D+Q2N+Q3

OPEN = Q3
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Equivalent Mealy and Moore state diagrams

O Moore machine

O outputs associated with state

Reset

N’ D’ + Reset

N D’

Reset’

Mealy machine

outputs associated with
trans tens (N'D’ + Reset)/0

O
() o

Reset’/1
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Example: traffic light controller

O A busy highway is intersected by a little used farmroad

0 Detectors C sense the presence of cars waiting on the farmroad
O with no car on farmroad, light remain green in highway direction

O if vehicle on farmroad, highway lights go from Green to Yellow to Red, allowing the
farmroad lights to become green

O these stay green only as long as a farmroad car is detected but never longer than a
set interval

O when these are met, farm lights transition from Green to Yellow to Red, allowing
highway to return to green

O even if farmroad vehicles are waiting, highway gets at least a set interval as green
O Assume you have an interval timer that generates:

O a short time pulse (TS) and

0 along time pulse (TL),

O in response to a set (ST) signal.

0O TS is to be used for timing yellow lights and TL for green lights
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Example: traffic light controller (cont’)

O Highway/farm road intersection

farm road

/ car sensors

|:| highway
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Example: traffic light controller (cont’)

O Tabulation of inputs and outputs

inputs description outputs description

reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road  FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval

TL long time interval expired

O Tabulation of unique states — some light configurations imply others

state description

S0 highway green (farm road red)
S1 highway yellow (farm road red)
S2 farm road green (highway red)
S3 farm road yellow (highway red)
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Example: traffic light controller (cont’)

O State diagram

S0: HG
S1: HY TS
S2: FG
S3: FY

(TL+CY
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Example: traffic light controller (cont’)

O Generate state table with symbolic states ) .
output encoding — similar problem
O Consider state assignments to state assignment
(Green = 00, Yellow = 01, Red = 10)

Inputs Present State Next State Outputs
C TL TS ST H F
0 - - HG HG 0 Green Red
- 0 - HG HG 0 Green Red
1 1 - HG HY 1 Green Red
- - 0 HY HY 0 Yellow Red
- - 1 HY FG 1 Yellow Red
1 0 - FG FG 0 Red Green
0 - - FG FY 1 Red Green
- 1 - FG FY 1 Red Green
- - 0 FY FY 0 Red Yellow
- - 1 FY HG 1 Red Yellow
SA1: HG = 00 HY = 01 FG = 11 FY =10
SA2: HG = 00 HY = 10 FG = 01 FY =11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)
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Logic for different state assignments

0 SA1
NS1 = CeTL'ePS1ePS0O + TSePS1'ePS0O + TSePS1ePSQ' + C'ePS1ePS0O + TLePS1ePS0O
NSO = CeTLePS1'ePSQ' + CeTL'ePS1ePS0O + PS1'ePSO
ST = CeTLePS1'ePSQ" + TSePS1'ePS0 + TSePS1ePSQ" + C'ePS1ePS0O + TLePS1ePSO
H1 =PS1 HO = PS1'ePSO
F1 = PS1' FO = PS1ePS0O'
0 SA2
NS1 = CeTLePS1' + TS'sPS1 + C'ePS1'ePSO
NSO = TSePS1ePS0' + PS1'ePS0 + TS'ePS1ePSO
ST = CeTLePS1' + C'ePS1'ePSO + TSePS1
H1 = PSO HO = PS1ePS0'
F1 = PSO' FO = PS1ePSO
0O SA3
NS3 = C'ePS2 + TLePS2 + TS'ePS3 NS2 = TSePS1 + CeTL'sPS2
NS1 = CeTLePSO + TS'sPS1 NSO = C'ePSO + TL'ePSO + TSePS3
ST = CeTLePSO + TSePS1 + C'ePS2 + TLePS2 + TSePS3
H1 = PS3 + PS2 HO = PS1
F1 = PS1 + PSO FO = PS3
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Vending machine example (PLD mapping)

DO = reset'(QO'N + QON' + Q1N + Q1D)
D1 = reset'(Q1 + D + QON) CLK
OPEN = Q1Q0 1
v 13 G s
I
D —13 < >
Lo
Reset _te g:ll Com
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Vending machine (cont’d)

O OPEN= Q1QO0 creates a combinational delay after Q1 and Q0 change

O This can be corrected by retiming, i.e., move flip-flops and logic through
each other to improve delay
0 OPEN= reset'(Ql + D + QON)(QO'N + QON' + Q1N + Q1D)
= reset'(Q1QON' + Q1N + Q1D + QO'ND + QON'D)
O Implementation now looks like a synchronous Mealy machine
O it is common for programmable devices to have FF at end of logic

I +
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Vending machine (retimed PLD mapping)

OPEN = reset'(Q1QON' + QIN + Q1D + QO'ND + QON'D)

CLK

%I Ty

N D3 = N
lg e

p—13 4 s

- gl
OPEN Open

Reset_§ 5:1‘ Seq
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Finite state machine optimization

O State minimization
O fewer states require fewer state bits
O fewer bits require fewer logic equations
O Encodings: state, inputs, outputs
O state encoding with fewer bits has fewer equations to implement
O however, each may be more complex
O state encoding with more bits (e.g., one-hot) has simpler equations
O complexity directly related to complexity of state diagram
O input/output encoding may or may not be under designer control
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Algorithmic approach to state minimization

O Goal - identify and combine states that have equivalent behavior
O Equivalent states:

0 same output

O for all input combinations, states transition to same or equivalent states
O Algorithm sketch

O 1. place all states in one set

O 2. initially partition set based on output behavior

O 3. successively partition resulting subsets based on next state transitions

O 4. repeat (3) until no further partitioning is required

O states left in the same set are equivalent
O polynomial time procedure
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State minimization example

O Sequence detector for 010 or 110

Input Next State Output

Sequence Present State | X=0 X=1 X=0 X=1

Reset SO S1 S2 0 0

0 S1 S3 S4 0 0
S2 S5 S6 0 0
S3 S0 S0 0 0
S4 S0 S0 1 0
S5 S0 S0 0 0
S6 S0 S0 1 0
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Method of successive partitions

Input Next State Output
Sequence Present State | X=0 X=1 X=0 X=1
Reset SO S1 S2 0 0
0 S1 S3 5S4 0 0
1 S2 S5 S6 0 0
00 S3 SO SO 0 0
01 5S4 SO SO 1 0
10 S5 SO SO 0 0
11 S6 S0 S0 1 0

(50S152S5354S556)

(S0S1S52S3S5) (5456)
(S0S3S5) (S1S2) (S4S6)

S1 is equivalent to S2

S3 is equivalent to S5

(S0) (S3S5) (S1S2) (S45S6)
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S4 is equivalent to S6

Minimized FSM

O State minimized sequence detector for 010 or 110

Input Next State Output
Sequence Present State| X=0 X=1 X=0 X=1
Reset SO s1' s1' 0 0
0+1 s1' Ss3' sS4 0 0
X0 Ss3' SO SO 0 0
X1 s4' SO0 SO 1 0
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More complex state minimization

O Multiple input example

inputs here
present next state output
state 00 01 10 11
S0 S0 ST 572 53 T
S1 S0 S3 S1 4 0
S2 S1 S3 S2 $4 1
S3 S1 SO0 S4 S5 0
5S4 SO0 S1 S2 S5 1
S5 S1 S4 SO S5 0

symbolic state
transition table
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Minimized FSM

O Implication chart method
O cross out incompatible states based on outputs
O then cross out more cells if indexed chart entries are already crossed out

51 present next state output
state 00 01 10 11
SO S0' S1 S2 S3' 1
< S1 S0 S3' S1 S3 0
S2 S1 S3' S2 SO 1
S3' S1 SO SO S3' 0

S3
minimized state table
(50==54) (S3==S5)

5S4

X

XX

S0 S1 S2 S3

Vs

0

S5

X
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Minimizing incompletely specified FSMs

O Equivalence of states is transitive when machine is fully specified
O But its not transitive when don't cares are present

ed., state output

SO -0 S1 is compatible with both SO and S2
S1 1- but SO and S2 are incompatible
S2 -1

O No polynomial time algorithm exists for determining best grouping of states
into equivalent sets that will yield the smallest number of final states
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Minimizing states may not yield best circuit

O Example: edge detector - outputs 1 when last two input changes from 0 to 1

+

[=NeNoN T leNeNe e

+

[y
(=
iy
(=

| P~ PR, OO OlX
== OO O o0
~or~oor oo
O M OOO OO

Q" =X (Q;xor Qp)
Q=X Q Q
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Another implementation of edge detector

O "Ad hoc" solution - not minimal but cheap and fast

CSE 370 - Spring 1999 - Sequential Logic Implementation - 65

State assignment

O Choose bit vectors to assign to each “symbolic” state
O with n state bits for m states there are 2" / (2" — m)!
[logn <= m<= 2"
0 2" codes possible for 1st state, 2N-1 for 2nd, 2"-2 for 3rd, ...
O huge number even for small values of n and m
O intractable for state machines of any size
O heuristics are necessary for practical solutions
O optimize some metric for the combinational logic
O size (amount of logic and number of FFs)
O speed (depth of logic and fanout)
0 dependencies (decomposition)
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State assignment strategies

O Possible strategies
O sequential — just number states as they appear in the state table
O random — pick random codes
O one-hot — use as many state bits as there are states (bit=1 —> state)
O output — use outputs to help encode states
O heuristic — rules of thumb that seem to work in most cases

O No guarantee of optimality — another intractable problem
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One-hot state assignment

O Simple
O easy to encode
O easy to debug
Small logic functions
O each state function requires only predecessor state bits as input

O

O

Good for programmable devices
O lots of flip-flops readily available
O simple functions with small support (signals its dependent upon)
O Impractical for large machines
O too many states require too many flip-flops
O decompose FSMs into smaller pieces that can be one-hot encoded
O Many slight variations to one-hot
O one-hot + all-0
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Heuristics for state assignment

O group 1's in next state map
I Q|Qr O
i a|c¢c ]
i b |c k
O Adjacent codes to states that share a common ancestor state

O group 1's in next state map
1 QlQ o b=i*a 1/ k/l
i a |b j c=k*a
k a |c | @ @
O Adjacent codes to states that have a common output behavior

O group 1's in output map
I Q9" 0 j=i*a+i*c

rab ] b=i*a . .
i c|d j d=i*c i/] i/]

@

O Adjacent codes to states that share a common next state
i/] i/k

c=i*a+i*b
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General approach to heuristic state assignment

O All current methods are variants of this
O 1) determine which states “attract” each other (weighted pairs)
0O 2) generate constraints on codes (which should be in same cube)
O 3) place codes on Boolean cube so as to maximize constraints satisfied
(weighted sum)

O Different weights make sense depending on whether we are optimizing for
two-level or multi-level forms
O Can't consider all possible embeddings of state clusters in Boolean cube
O heuristics for ordering embedding
O to prune search for best embedding
O expand cube (more state bits) to satisfy more constraints
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Output-based encoding

O Reuse outputs as state bits - use outputs to help distinguish states
O why create new functions for state bits when output can serve as well
O fits in nicely with synchronous Mealy implementations

Inputs Present State Next State Outputs
C TL TS ST H F
- - HG HG 0 00 10

- 0 - HG HG 0 00 10

1 1 - HG HY 1 00 10

- - 0 HY HY 0 01 10

- - 1 HY FG 1 01 10

1 0 - FG FG 0 10 00

0 - - FG FY 1 10 00

- 1 - FG FY 1 10 00

- - 0 FY FY 0 10 01

- - 1 FY HG 1 10 01
HG = ST' H1’ HO' F1 FO' + ST H1 HO’ F1' FO Output patterns are unique to states, we do not
HY = ST H1' HO' F1 FO’ + ST’ H1' HO F1 FO’ need ANY state bits — implement 5 functions
FG = ST H1"HO F1 FO’ + ST" H1 HO’ F1' FO’ (one for each output) instead of 7 (outputs plus
HY = ST H1 HO’ F1’ FO’ + ST’ H1 HO' F1' FO 2 state bits)
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Current state assignment approaches

O For tight encodings using close to the minimum number of state bits
O best of 10 random seems to be adequate (averages as well as heuristics)
O heuristic approaches are not even close to optimality
O used in custom chip design

O One-hot encoding
O easy for small state machines
O generates small equations with easy to estimate complexity
O common in FPGAs and other programmable logic

O Output-based encoding
O ad hoc - no tools
O most common approach taken by human designers
O vyields very small circuits for most FSMs
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Sequential logic implementation summary

O Models for representing sequential circuits
O abstraction of sequential elements
O finite state machines and their state diagrams
O inputs/outputs
O Mealy, Moore, and synchronous Mealy machines
O Finite state machine design procedure
O deriving state diagram
O deriving state transition table
O determining next state and output functions
O implementing combinational logic
O Implementation of sequential logic
O state minimization
O state assignment
O support in programmable logic devices
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