Combinational logic

O

Logic functions, truth tables, and switches
0O NOT, AND, OR, NAND, NOR, XOR, . ..
O minimal set

O Axioms and theorems of Boolean algebra
O proofs by re-writing
O proofs by perfect induction
Gate logic
O networks of Boolean functions
0 time behavior

O

0 Canonical forms
O two-level
O incompletely specified functions
Simplification
O Boolean cubes and Karnaugh maps
O two-level simplification

O
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Possible logic functions of two variables

O There are 16 possible functions of 2 input variables:
O in general, there are 2**(2**n) functions of n inputs

_>F

Y —»

X Y] 16 possible functions (FO—F15)
0 0/0 0 0 0O 0O 0o 0 o0 1 T 1 1 1T 1 1
0 10 0 O 0o 1 1 1 1 O 0o 0 1 1 1 1
i o0/0 0 1 1 0 O 1 1 0 O 1 1 0 O 1 1
1 10 1 0/1 o 1 0 1 0 1 0 1 0\1 0 1
s N
0 N Y// \\ntY th\ 1
Xand Y XxorY X=Y 7 X nand Y
XorY X nor Y not (X and Y)
not (X or Y)
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Cost of different logic functions

O Different functions are easier or harder to implement
0O each has a cost associated with the number of switches needed
0 (FO) and 1 (F15): require 0 switches, directly connect output to low/high
X (F3) and Y (F5): require 0 switches, output is one of inputs
X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
X nor Y (F4) and X nand Y (F14): require 4 switches
XorY (F7) and X and Y (F1): require 6 switches
X =Y (F9)and X O Y (F6): require 16 switches

Oo0o0goood

O thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice
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Minimal set of functions

O Can we implement all logic functions from NOT, NOR, and NAND?
O For example, implementing XandY
is the same as implementing not (X nand Y)
O In fact, we can do it with only NOR or only NAND
O NOT is just a NAND or a NOR with both inputs tied together

X Y [XnorY X Y [XnandY
0 0 1 0 0 1
1 1 0 1 1 0

O and NAND and NOR are "duals",
that is, its easy to implement one using the other

X nand Y not ( (not X) nor (not Y) )
X norY not ( (not X) nand (not Y) )

O But lets not move too fast . . .
O lets look at the mathematical foundation of logic
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An algebraic structure

O An algebraic structure consists of
0 a set of elements B
O binary operations { +, ¢ }
O and a unary operation { '}
O such that the following axioms hold:

1. the set B contains at least two elements, a, b, such thata°b

2. closure: a+b isinB aeb isinB

3. commutativity: a+b=b+a aeb=bea

4, associativity: a+(b+c=(@+b)+c ae(bec)=(aeb)ec

5. identity: a+0=a ael=a

6. distributivity: a+(bec)=(@+b)e(a+c) ae(b+c)=(aeb)+(aec)
7. complementarity: a+a' =1 aea =0
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Boolean algebra

O Boolean algebra
0 B=4{0,1}
O + is logical OR, e is logical AND
O 'is logical NOT

O All algebraic axioms hold
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Logic functions and Boolean algebra

O Any logic function that can be expressed as a truth table can be written as
an expression in Boolean algebra using the operators: ', +, and e

X Y |[XeY X Y |[X |[XeY

0o o0 |0 0o 0 1 (0

0 1 0 0 1 1 1

i 0 |0 i 0 |0 |O

1 1 1 1 1 0 0

X Y |[X |Y |[XeY X oY |[(XeY)+(X oY)

0 0 1 1 0 1 1

0 1 1 |0 |0 0 0 S -

1 0 0 1 0 0 0 (XeY)+ (X oY) = X=Y

1 1 0 0 1 (1] 1
Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise
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Axioms and theorems of Boolean algebra

O identity

1. X+0=X 1D. Xel=X
O null

2. X+1=1 2D. Xe0=0
O idempotency:

3. X+X=X 3D. XeX=X
O involution:

4. X)'=X
O complementarity:

5 X+X' =1 5D. XeX' =0
O commutativity:

6. X+Y=Y+X 6D. XeY=YeX

O associativity:
7. X+Y)+Z=X+(Y+2) 7D. (XeY)eZ=Xe(Yeo2)
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Axioms and theorems of Boolean algebra (cont’d)

O distributivity:
8. Xe(Y+2)=(XeY)+(XeZ) 8D. X+ (Ye2Z)=X+Y)e(X+2)
O uniting:

9. XeY+XeY =X . X+Y)eX+Y)=X
O absorption:
10. X+ XeY =X 10D. Xe (X+Y)=X
1L (X+Y)eY=XeY 11ID. XeY)+Y=X+Y
O factoring:
12.X+Y)e (X' +2) = 16D. XeY + X' ¢ Z =
XeZ+X oY X+2)e(X'+Y)
0 concensus:
13.XeY)+ (Ye2)+ (X' 02) = 17D.X+Y)e(Y+2Z)e (X' +2) =
XeY+X oZ X+Y)e(X' +2)
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Axioms and theorems of Boolean algebra (cont’)

O de Morgan's:

14. (X+Y+.)=XeY0e . 12D. XeYe ) =X+Y+ ..
O generalized de Morgan's:

15. f'(X1,X2,...,Xn,0,1,+,¢) = f(X1',X2',...,Xn",1,0,¢,+)

O establishes relationship between e and +
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Axioms and theorems of Boolean algebra (cont’)

O

Duality

O a dual of a Boolean expression is derived by replacing
eby +,+ bye 0by 1, and 1 by 0, and leaving variables unchanged

O any theorem that can be proven is thus also proven for its dual!
O a meta-theorem (a theorem about theorems)

O duality:
16.X+Y+ ... o XeYeo .,

generalized duality:
17. f (X1,X2,...,Xn,0,1,+,¢) = f(X1,X2,...,Xn,1,0,¢,+)

O

O Different than deMorgan’s Law
O this is a statement about theorems
O this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)

0 Using the axioms of Boolean algebra:
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O e.g., prove the theorem: XeY+XeY = X
distributivity (8) XeY +XeY = Xe(Y+Y")
complementarity (5) Xe(Y+Y") = Xe (1)
identity (1D) Xe (1) = XO

O e.g., prove the theorem: X+ XeY X
identity (1D) X + XeY = Xel + XeY
distributivity (8) Xel + XeY = Xe(1+4Y)
identity (2) Xe(1+Y) = Xe(1)
identity (1D) Xe (1) = XO




Proving theorems (perfect induction)

O Using perfect induction (complete truth table):
O e.g., de Morgan's:

o XY XY [ (X+Y) XeY
X+Y)=XeY 0 0 1 1 1 1
NOR is equivalent to AND 0 1 1 0 0 0
. 1 0 0 1 0 0
with inputs complemented i1 1 0 0 0 0
Cw X Y X Y |[(XeY) X+Y
(XeY)=X+Y 0 0 1 1 1 1
NAND is equivalent to OR 0o 1 1 0 1 1
with inputs complemented % (1) 8 (1) (1) é
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A simple example
O 1-bit binary adder
O inputs: A, B, Carry-in A—> s
O outputs: Sum, Carry-out B — Cout
Cin —
A B Cin|lS Cout
0 0 0 1]0 O
0 0 1|1 O
0 1 0|1 o0
@ e S=A'B'Cn+ABCin'+AB Cin' + ABCin
ot Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
1 1 1 (1 1
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Apply the theorems to simplify expressions

O The theorems of Boolean algebra can simplify Boolean expressions
O e.g., full adder's carry-out function (same rules apply to any function)

Cout = ABCin+AB'Cin+ABCin'+ ABCin

(A" +
1)B
B Cin
B Cin
B Cin
B Cin
B Cin
B Cin
= BCin

A'BCin + AB'Cin + ABCin' + ABCin + ABCin
A'BCin + ABCin + AB'Cin + ABCin' + ABCin

A)BCin + AB'Cin + ABCin' + ABCin
Cin + AB'Cin + ABCin' + ABCin

+ AB'Cin +ABCin' + ABCin + ABCin
+ AB'Cin + ABCin + ABCin' + ABCin
+ A(B'+B)Cin + ABCin' + ABCin

+ A(1)Cin + ABCin' + ABCin

+ ACin + AB (Cin'+ Cin)

+ ACin + AB(1)

+ ACin + AB
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From Boolean

expressions to logic gates

— XY
0o NOT X X ~X X Y 01
Dev
O AND XeY XY Xxay X —

0O OR X+Y

Y — 4

)
v >

= OO
= OO

xoy

= O OX
RO O<
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From Boolean expressions to logic gates (cont’d)

O NAND

0O NOR

0 XOR

xoy

0 XNOR

X Y |Z
X - 0 0 |1
Y - z 0 1 |1
1 0 |1
1 110
X Y |Z
X 0 0 |1
:Do—z 0 1 |0
Y 1 0 |0
1 1 1|0
X Y |Z
X 2 0 0 |0
Y 0 1 |1
1 0 |1
1 1 |0
X Y |Z
E DS R
Y 1 0 |0
11 |1
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XxorY=XY+XY
X or Y but not both
("inequality", "difference")

XxnorY=XY+XY
X andY are the same
("equality", "coincidence™)

From Boolean expressions to logic gates (cont’d)

O More than one way to map expressions to gates

0eg., Z=AeB e(C+D)=(As(B o (C+ D))

A—Po—
B _‘D*—D— 1

C—3
D R

T2
T1
use of 3-input gate
~ Ao ,/
B——_>—— —Z
c—3— |
2 b—) >
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Waveform view of logic functions

O Just a sideways truth table
O but note how edges don't line up exactly
O it takes time for a gate to switch its output!

time R

| 100 | 200
5
Mot % ! |
REY —
Not (% & ') ]
Ay I 1
Not (¢ + ) 1 |
B owar Y r I
Not (X =or Yj 1 | S

change in Y takes time to "propagate” through gates
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Choosing different realizations of a function

RES
_]UJ
To

RPHEHHRPROOOO>
RPROOHRLOOW
HOFROFOFON
OO OF—ON

twio-level realization
- (we dan’t count NOT gates)

- 71

wtti-level realization
' (gates|with fewer inputs)

| ) ; - XOR| gate (easier to draw
Z but copstlier to build)

—7 23
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Which realization is best?

O Reduce number of inputs

O literal: input variable (complemented or not)
O can approximate cost of logic gate as 2 transitors per literal
O why not count inverters?

O fewer literals means less transistors
O smaller circuits

O fewer inputs implies faster gates
O gates are smaller and thus also faster

O fan-ins (# of gate inputs) are limited in some technologies

O Reduce number of gates
O fewer gates (and the packages they come in) means smaller circuits
O directly influences manufacturing costs
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Which is the best realization? (cont’d)

O Reduce number of levels of gates
O fewer level of gates implies reduced signal propagation delays
O minimum delay configuration typically requires more gates
O wider, less deep circuits
O How do we explore tradeoffs between increased circuit delay and size?
O automated tools to generate different solutions
O logic minimization: reduce number of gates and complexity
O logic optimization: reduction while trading off against delay
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Are all realizations equivalent?

O Under the same input stimuli, the three alternative implementations have
almost the same waveform behavior
O delays are different
O glitches (hazards) may arise
O variations due to differences in number of gate levels and structure

O The three implementations are functionally equivalent

21 - — T U | I
£2 - — I T U | I
= I o T ey I U I
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Implementing Boolean functions

O Technology independent
O canonical forms
O two-level forms
O multi-level forms

O Technology choices
O packages of a few gates
O regular logic
O two-level programmable logic
O multi-level programmable logic
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Canonical forms

O Truth table is the unique signature of a Boolean function
O Many alternative gate realizations may have the same truth table

O Canonical forms
O standard forms for a Boolean expression
O provides a unique algebraic signature
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Sume-of-products canonical forms

O Also known as disjunctive normal form
O Also known as minterm expansion

F= 001 011 101 110 111
F = ABC + ABC + ABC + ABC' + ABC

PR, OOOO>
HFHROOFRFOOm
HFORFRORFORF O
HRROROROM

F' = ABC + ABC + ABC
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Sume-of-products canonical form (cont’d)

O Product term (or minterm)

O ANDed product of literals — input combination for which output is true
O each variable appears exactly once, in true or inverted form (but not both)

A_B C  mintenns F in canonical form:
ABC :
8 8 (1) A.B.g 2(1) F(A B, C) =3m(1,35,67)
0 1 0 | ABC m2 = ml+m3+m5+m6+m7
0 1 1 |ABC m3 = AB'C + A'BC + AB'C + ABC' + ABC
1 0 0 |ABC m4 ) o
1 0 1 |ABC ms canonical form # minimal form
1 1 0 ABC'  mé6 F(A, B,C) = AB'C+ ABC + AB'C + ABC + ABC'
1 1 1 |ABC m7 = (A'B' + AB + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
=C + ABC'
=ABC'+C
short-hand notation for =AB+C

minterms of 3 variables
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Product-of-sums canonical form

O Also known as conjunctive normal form

O Also known as maxterm expansion

F= 000 010 100
F= (A+B+C) (A+B +C) (A +B+C)

A B CJ|F F
0 0 0 [0—1
0 0 1|1 0
0 1 0 |01
0 1 1 |1

1 0 0 (071
1 0 1|1 O
1 1 0|1 O
11 1)1 O

F=(A+B+C)(A+B +C)A'+B+C)(A+B +C)(A+B +C)
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Product-of-sums canonical form (cont’d)

O Sum term (or maxterm)
O ORed sum of literals — input combination for which output is false
O each variable appears exactly once, in true or inverted form (but not both)

A B C | maxterms F in canonical form:

0 0 0 |A+B+C MO F(A, B, C) =1M(0,2,4)

0 0 1 |A+B+C M1 = MO e M2 e M4

0 1 0 |A+B+C M2 = (A+B+C)(A+B'+C)(A'+B+0C)
0 1 1 |A+B+C M3

1 0 0 |A+B+C M4 canonical form # minimal form

L0 1 JA+B+C M5 F(A,B,C) =(A+B+C)(A+B +C)(A'+B+C)
1 1 0 |A+B+C M6 =(A+B+C)(A+B +0)

11 1 [A+B+C M7 (A+B+C)(A+B+C)

=(A+0O)B+C)

short-hand notation for
maxterms of 3 variables
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S-0-P, P-0-S, and de Morgan’s theorem

O Sum-of-products
0O F =AB'C + ABC' + AB'C'

O Apply de Morgan's
O (F) = (AB'C' + ABC' + AB'C")'
OF=A+B+COA+B+C)(A+B+0)

O Product-of-sums
OF=A+B+C)(A+B'+C)(A'+B+C)(A+B'+C)(A'+B' +C)
Apply de Morgan's
OF)Y=((A+B+C)YA+B +C)A+B+C)YA'+B'+C)(A'+B' +C))
0O F=AB'C+ A'BC + AB'C + ABC' + ABC

O
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Four alternative two-level implementations
of F=AB+C

B

canonical sum-of-products

C

>
>

= |
D_ minimized sum-of-products

/canonical product-of-sums

F3

inimized product-of-sums
D‘l_ /m|n|m|ze

) >
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Waveforms for the four alternatives

O Waveforms are essentially identical
O except for timing hazards (glitches)

O delays almost identical (modeled as a delay per level, not type of gate
or number of inputs to gate)

Fi
Fz
F3
Fé

P g gt e Sy
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Mapping between canonical forms

O Minterm to maxterm conversion
O use maxterms whose indices do not appear in minterm expansion
O e.g., F(A,B,C) = 2m(1,3,5,6,7) = NM(0,2,4)
O Maxterm to minterm conversion
O use minterms whose indices do not appear in maxterm expansion
0 e.g., F(A,B,C) = NM(0,2,4) = £m(1,3,5,6,7)
O Minterm expansion of F to minterm expansion of F'
O use minterms whose indices do not appear
O e.g., F(A,B,C) = 2m(1,3,5,6,7) F'(A,B,C) = zm(0,2,4)
0O Maxterm expansion of F to maxterm expansion of F'
O use maxterms whose indices do not appear
O e.g., F(A,B,C) = NM(0,2,4) F'(A,B,C) = NM(1,3,5,6,7)
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Incompleteley specified functions

0O Example: binary coded decimal increment by 1
O BCD digits encode the decimal digits 0 — 9 in the bit patterns 0000 — 1001

=N

off-set of W

on-set of W

= OO |- O

OO O

don't care (DC) set of W

these inputs patterns should
never be encountered in practice
- "don't care” about associated
output values, can be exploited
in minimization

RPRHRHRHERHRRROO0OO0O0OO0O0OOO
HHERFRFROOOOHKFERFREFEFOOOOm
HFHROOHROOHROORRFOOIN
HFOROHOHROROROROROO

XXX XXHdrrrocooocooo|ls

XXX XX XXOooo
XX X X X X

0
X
X
X
X
X
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Notation for incompletely specified functions

O Don't cares and canonical forms
O so far, only represented on-set
O also represent don't-care-set
O need two of the three sets (on-set, off-set, dc-set)

O Canonical representations of the BCD increment by 1 function:

OZ=m0+m2+m4+m6+ m8+di0 +dil +d12 + di3 + di4 + di15
0 Z=2[m(0,2,4,6,8) +d(10,11,12,13,14,15) ]

[0 Z=M1eM3eM5eM7eM9eDI10e D1l e D12 ¢ D13 e D14 ¢ D15
0 Z=n[M(1,3,57,9)  D(10,11,12,13,14,15) ]
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Simplification of two-level combinational logic

O Finding a minimal sum of products or product of sums realization
O exploit don't care information in the process

O Algebraic simplification
O not an algorithmic/systematic procedure
O how do you know when the minimum realization has been found?

O Computer-aided design tools

O precise solutions require very long computation times, especially for
functions with many inputs (> 10)

O heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions
O Hand methods still relevant
O to understand automatic tools and their strengths and weaknesses
O ability to check results (on small examples)
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The uniting theorem

O Key tool to simplification: A (B' + B) = A
O Essence of simplification of two-level logic

O find two element subsets of the ON-set where only one variable changes
its value — this single varying variable can be eliminated and a single
product term used to represent both elements

F = AB+AB = (A+A)B' = B

[o]]
0]

B has the same value in both on-set rows
— B remains

F
7
& A has a different value in the two rows

— Ais eliminated

o [o)|>

¢

B
1

-
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Boolean cubes

O Visual technique for indentifying when the uniting theorem can be applied
O n input variables = n-dimensional "cube"

01 11

1-cube O—0O 2-cube

111

3-cube Y 101

0009
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Mapping truth tables onto Boolean cubes

O Uniting theorem combines two "faces" of a cube into a larger "face"
O Example:

F two faces of size 0 (nodes)

0 11 combine into a face of size 1(line)
1

00 10

A varies within face, B does not
this face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes
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Three variable example

O Binary full-adder carry-out logic (A'+A)BCin
AB(Cin'+Cin)
A B Cin Cout
0 0 O 0
0 0 1 0
0 1 0 0
0o 1 1 1
1 0 O 0 A(B+B")Cin
1 0 1 1
i 1 0 1 .
11 1 1 the on-set is completely covered by

the combination (OR) of the subcubes
of lower dimensionality - note that "111”
is covered three times

Cout = BCin+AB+ACin
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Higher dimensional cubes

O Sub-cubes of higher dimension than 2

F(A,B,C) = m(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
Le., 3 dimensions — 2 dimensfons

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal' A
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m-dimensional cubes in a n-dimensional
Boolean space

O Ina 3-cube (three variables):
O a 0-cube, i.e., a single node, yields a term in 3 literals
O a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
O a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
O a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

O In general,
O an m-subcube within an n-cube (m < n) yields a term with n — m literals
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Karnaugh maps

O Flat map of Boolean cube
O wrap—around at edges

O hard to draw and visualize for more than 4 dimensions
O virtually impossible for more than 6 dimensions

O Alternative to truth-tables to help visualize adjacencies

O guide to applying the uniting theorem

O on-set elements with only one variable changing value are adjacent

unlike the situation in a linear truth-table
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Karnaugh maps (cont’d)

O Numbering scheme based on Gray—code
0 e.g., 00,01, 11, 10

O only a single bit changes in code for adjacent map cells

A
AB —_—
c\_ 00 01 11 10
0 A
e R 0 |4 |12 |8
1
i s 7 s
5 1[5 |13 |9
A 3 |7 |15 |1
C
o 12 le la 2 |6 |14 J10
C
1 3 7 s
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13 = 1101= ABCD




Adjacencies in Karnaugh maps

O Wrap from first to last column
O Wrap top row to bottom row

010

110

100

CJ oo1

011

111

101
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Karnaugh map examples

0 F= 

O Cout =

0 f(A,B,C) = =m(0,4,6,7)

B

anf o |G|

]

@
&

AC + BC' ><
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Bl

AB+ ACin + BCin

obtain the
complement
of the function
by covering 0s
with subcubes




More Karnaugh map examples

ofoft]s G(ABC) = A

Clo]|o Ll__i}

A
ED F(A,B,C) = 2m(0,4,5,7) = AC + B'C’
D

0
<l
0 QD 0 F’ simply replace 1's with 0's and vice versa
F(A,B,C) =2 m(1,2,3,6) =BC'+ A'C
0

CSE 370 - Spring 1999 - Combinational Logic - 47

Karnaugh map: 4-variable example

0 F(A,B,C,D) = m(0,2,3,5,6,7,8,10,11,14,15)

F= C +ABD +BD’

A 1111
1 0 0 1

0 1 0 0

1111| z

L1 1 1 1 0000 X

find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)
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Karnaugh maps: don’t cares

0 f(AB,C,D) =%m(1,3,5,7,9) +d(6,12,13)
O without don't cares
Of= AD + BCD
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Karnaugh maps: don’t cares (cont’d)

0 f(A,B,C,D) = 2m(1,3,5,7,9) + d(6,12,13)

O f=AD+ B'CD without don't cares
Of=AD+CD with don't cares
A .
by using don't care as a "1"
il / a 2-cube can be formed
ﬂl_ T x T 1 ] rather than a 1-cube to cover
D this node
l 1{1)Jofo
C don'’t cares can be treated as
o XxX|]of|o 1s or Os
depending on which is more
advantageous
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Design example: two-bit comparator

A B C D |[LT EQ GT

0 0 0 0 |O 1 0

o1 0 o

N1 Q LT—> AB<CD 1 1]1 0 0
—»C 0110 1 0
N2 —» D GT—> AB>CD 1 0 1 0 0
1 1 1 0 0

1 00 00 0 1

01 0 0 1

10 (0 1 0

1 1 1 0 0]

i 1 1.0 0 (|0 O 1

bIocka(:]lggram 0110 o 1

truth table % (1) 8 (1) (1)

we'll need a 4-variable Karnaugh map
for each of the 3 output functions
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Design example: two-bit comparator (cont’d)

A A A

olofofo (] ofofo o (1 ]\()
ToooD oooD 001__1JD
0

Lc;lé ﬂ 0 QJ c 0| o0 0 c 0| o0 0
¢_1J 0] o0 0l0]oO 0| o0 m 0
K-map for LT K-map for EQ K-map][Fe—FLT

LT = AB'D+ AC + B'CD

EQ A'B'C'D + ABC'D + ABCD + AB'CD’ = (A xnor C) (B xnor D)
GT = BCD + AC + ABD'
LT and GT are similar (flip A/C and B/D)
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Design example: two-bit comparator (cont’d)

A B CD

Y

Y

Y

Y

-
)

two alternative

implementations of EQ
with and without XOR

125

XNOR is implemented with

at least 3 simple gates
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Design example: 2x2-bit multiplier

Al —¥
A2 —>
Bl —»
B2 —»

—> P1
—> P2
—> P4
— P8

block diagram

and
truth table

A2 A1 B2B1|P8 P4 P2 Pl
00 00 (0 0 0 O
0110 0 0 O
101])0 0 0 O
1 1 |10 0 0 O
01000 O O O
0110 0 0 1
100 0 1 O
11 ]0 0 1 1
1000 (0 0 0 O
01 (0 0 1 0
1010 1 0 0
11 (0 1 1 0
I'1 000 0 0 O©
0110 0 1 1
101]0 1 1 0
111 0 0 1

4-variable K-map
for each of the 4
output functions
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Design example: 2x2-bit multiplier (cont’d)

A2 A2
- K-map 1or P4
olololo K-map for P8 K-map for P4 olololo
P4 = A2B2B1’
oo oo
0o BL + A2A1'B2 0\ 0 BL
0| o 0 0 NO 1
B2 P8 = A2A1B2B1 B2 <
o ofo]o ol ol1]s
1 1
A2 A2
ol ol ol o K-map for P2 K-map for P1 ol ol ol o
P1 =Al1B1
1|1 1
0 0 [ Bl 0 ! j 0 Bl
ofl1]l o0 ofl1]1)]o
B2 "\\i‘\ = A2’A1B2 B2
0 (1) 140 + A1B2B1’ o|lofo]o
1 + A2B2'B1 1
+ A2A1'B1
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Design example: BCD increment by 1
I8 14 12 11,08 04 02 01
0 0 0 0 0 0 0 1
0 0 O 110 O 1 0
0 O 1 0 |0 O 1 1
R R 0 % 0 0l0 1 8 3
I 01 0 1 0 11]/0 1 1 0
o I g N SO SL AR
4 04 1 0 0 0|1 0 0 1
I8 —» — 08 1 0 0 110 0 0 O
1 0 1 0 X X X X
1 0 1 1 [ X X X X
1 1 0 0 X X X X
SRS RS
block diagram I 11 11X X X X
and
truth table

4-variable K-map for each of
the 4 output functions
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Design example: BCD increment by 1 (cont’d)

8 [
0 0 LX lJ 08 04 0 rl__X 0
X 0 I 0 b_x 0 1
o [ ][] x 08=141211 + I8 11" E o |«
x|

12

04=I412+1411'+ 41211
0 0 _X] 0 ( 1 X] X
—— 02 =18 12’11 + 1211’ T
8 o1 =11 & ]
0 0 X 0| o1 l 1 1 X 1J

12 12
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Definition of terms for two-level simplification

O Implicant
O single element of ON-set or DC-set or any group of these elements that
can be combined to form a subcube
O Prime implicant
O implicant that can't be combined with another to form a larger subcube

O Essential prime implicant
O prime implicant is essential if it alone covers an element of ON-set
O will participate in ALL possible covers of the ON-set
O DC-set used to form prime implicants but not to make implicant essential
O Objective:
O grow implicant into prime implicants
(minimize literals per term)

O cover the ON-set with as few prime implicants as possible
(minimize number of product terms)
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Examples to illustrate terms

A
o l(x T2l o 6 prime implicants:
— A'B'D, BC', AC, A'C'D, AB, B'CD
N[l | o 5 / ‘\
E Al o I u essential
0] 0 (l0J] 1 minimum cover: AC + BC' + A'B'D
A
5 prime implicants: ol ofl1] o
BD, ABC', ACD, A'BC, A'C'D —_—
C @) e
essential 0 |1 [1 _1]
C
minimum cover: 4 essential implicants ojLjojeo
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Algorithm for two-level simplification

O Algorithm: minimum sum-of-products expression from a Karnaugh map

O Step 1: choose an element of the ON-set
O Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
O consider top/bottom row, left/right column, and corner adjacencies
O this forms prime implicants (number of elements always a power of 2)

O Repeat Steps 1 and 2 to find all prime implicants

O Step 3: revisit the 1s in the K-map
O if covered by single prime implicant, it is essential, and participates in
final cover
O 1s covered by essential prime implicant do not need to be revisited
O Step 4: if there remain 1s not covered by essential prime implicants

O select the smallest number of prime implicants that cover the
remaining 1s
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Algorithm for two-level simplification (example)

A A
X 1 0 1 X j 0 1
0 1 1 1 0 1 1 1
D D
0| X| X | O 0|l X[| X | O
C C
0 1 0 1 0 L1j] o 1 0 1 0 1
2 primes around A'BC'D’ 2 primes around ABC'D
o) e [ x (1)) o[l 1 x 1) o | 1
o I {|( 2]l b o1ty o 1]l ] 1],
0 (X XJ 0 0| X|[| X| O 0|l X|| X | O
C C C
0 1 0 1 0 1[0 1 0 1 0 1
[ ]
3 primes around AB'C'D’ 2 essential primes minimum cover (3 primes)
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Combinational logic summary

O

Logic functions, truth tables, and switches
O NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
O Axioms and theorems of Boolean algebra
O proofs by re-writing and perfect induction
O Gate logic
O networks of Boolean functions and their time behavior
O Canonical forms
O two-level and incompletely specified functions
O Simplification
O two-level simplification
O Later
O automation of simplification
O multi-level logic
O design case studies
O time behavior
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