CSE 370 Solution Set #5
Spring 1999

Total Points 20


1) Katz 4.18a,b  Points: a:0, b:1

    Part A- X = D + A'B'C                 Y = AD + A'B'C'        Z = A'B' + A'D

   

     Part B -  Group the K-maps as below.   Results in an expression that has only 4 total unique terms.

        X = AD + A'D + A'B'C         Y = AD + A'B'C'         Z = A'D + A'B'C + A'B'C'

           

   


 


2) Katz 4.21 - 3 points:
   a. 

I3 I2 I1 I0 | O(1) O(0)
0 0 0 0   X X
0 0 0 1   0 0
0 0 1 0   0 1
0 0 1 1   0 1
0 1 0 0   1 0
0 1 0 1   1 0
0 1 1 0   1 0
0 1 1 1   1 0
1 0 0 0   1 1
1 0 0 1   1 1
1 0 1 0   1 1
1 0 1 1   1 1
1 1 0 0   1 1
1 1 0 1   1 1
1 1 1 0   1 1
1 1 1 1   1 1

 

Part B)    O(1) = I2 + I3                                         O(0) = I3  +  I1 I2'
       hw4_2.gif (3888 bytes)

Part C)

                            hw4_2.gif (3888 bytes)



3) 5  Points:
   

Part A:   Here is the truth table.  Note both +0 and -0 map to 0, which is logical, but not required for this HW.

I4 I3 I2 I1 I0 | O3 O2 O1 O0 Err
0 0 0 0 0   0 0 1 0 0
0 0 0 0 1   0 0 1 1 0
0 0 0 1 0   0 0 0 0 0
0 0 0 1 1   0 0 0 1 0
0 0 1 0 0   0 1 0 0 0
0 0 1 0 1   0 1 0 1 0
0 0 1 1 0   0 1 1 0 0
0 0 1 1 1   0 1 1 1 0
0 1 0 0 0   x x x x 1
0 1 0 0 1   x x x x 1
0 1 0 1 0   x x x x 1
0 1 0 1 1   x x x x 1
0 1 1 0 0   x x x x 1
0 1 1 0 1   x x x x 1
0 1 1 1 0   x x x x 1
0 1 1 1 1   x x x x 1
1 0 0 0 0   0 0 0 0 0
1 0 0 0 1   1 1 1 1 0
1 0 0 1 0   1 1 1 0 0
1 0 0 1 1   1 1 0 1 0
1 0 1 0 0   1 1 0 0 0
1 0 1 0 1   1 0 1 1 0
1 0 1 1 0   1 0 1 0 0
1 0 1 1 1   1 0 0 1 0
1 1 0 0 0   1 0 0 0 0
1 1 0 0 1   x x x x 1
1 1 0 1 0   x x x x 1
1 1 0 1 1   x x x x 1
1 1 1 0 0   x x x x 1
1 1 1 0 1   x x x x 1
1 1 1 1 0   x x x x 1
1 1 1 1 1   x x x x 1

Part B: 

 

hw4_4.gif (1920 bytes) hw4_4.gif (1920 bytes)

O3 = I3  +  I4 I2  +  I4 I0  +  I4 I1

O2 = I2 I1' I0' + I4' I2 +  I4' I2' I1 + I4 I2' I0     

O1 = I4' I1  +  I1 I0' + I4 I1' I0

O0 = I0

Err =  I4' I3 + I3 I2 + I3 I0 + I3 I1

Part C:  This was done just as in the smaller problems, but the picture of this was either too big or too fuzzy to be of any use.  If you have any questions just ask Grant.



4) 0 Points:

Full Adder Sub-Circuit
  
    hw4_4.gif (1920 bytes)

Full Adder Using Half Adders
hw4_4.gif (1920 bytes)

 

Full Adder

hw4_4.gif (1920 bytes)

 

Sample Wave Form - Sum is from the Circuit using half adders, Sum2 is from the pure Full Adder.

hw4_4.gif (1920 bytes)


5) 2 Points:
   
Four Bit Ripple Carry Adder

The timing of the ripple carry adder should reflect the carry bit propagating down.   This was most evident in the input combination 0000 + 1111  -> 0001 + 1111 because the carry bit must propigate all the way down, making the timing wave form look like a ladder.  If your bit only propigated through one step it is likely that the high and low order bits were reversed.

wpe1.jpg (8924 bytes)


   


6) 5 Points:   You didn't have to break down the circuit like this, but this is good way to do it.
   

Look ahead adder unit - Generates Propigate and Generate Signals
hw4_6.gif (8958 bytes)

 

Lookahead Carry Logic Unit

hw4_6.gif (8958 bytes)

 

Top Level Schematic using the look ahead units.  It is not necessary to use the full adders (the Cout are not used), but this is fine because it is specified this way in the problem.

hw4_6.gif (8958 bytes)

 

Here is a rough display of what the timing diagram should look like.  The Carry-Lookahead adder is very fast because it has no delay from the signals rippling though.

hw4_6.gif (8958 bytes)



7) 4 Points total:

A 2:1 mux which is useful for this problem
hw4_6.gif (8958 bytes)

 

And the entire circuit.  The upper four bits of each number are fed through the muxs and selected based on the Cout of the lower four bits

hw4_6.gif (8958 bytes)