The Problem

Design a combinatorial circuit with 8-bit input | (I7...1g) which detects the pattéd1 and
outputs :

® A single bit outpuP which tells whether the pattern is present at all or not.

® A 3-bit outputY (Y2Y1Yo ) which tells the location at which the pattern is detected
and in case of multiple instance gives the smallest number amongst the locations .

—e] 17
] 16
—3) 15
—) It
—5) 1
—) 1k
—) 11
—5g) 10

FEEIENT @—
T
T B
i B

For example
If I= 00001010 thenY =001 because it is located in locati@n
543210

and if1=00010101 thenY=100 because the pattern is located at locations 0,2, and 4 and
of themO is the minimum.

* An additional constraint that s there is to divide problem into blocks so that NO
BLOCK hasmore than four input except one which can have five.

A point to note is the outpuX is don’t care for when pattern is NOT detected, that is
when PRESENT is zero.



The Solution

First of all lets see a simpler problem which is just to solve the problem for four inputs
[ (Isl21110) and two single bit outputs ,P for present and L for location (note that the 3-bit
pattern can only bein two locations 0 or 1 so the only 1 bit required for location )

L 1
L 1
L 1L
L 1

F B
L G

So more P to be one there are two cases
| =-101 or | =101-

Which gives
P=1sl11+ 1211

Now to find out the expression for L. Obviously the expression for L can be found out
easily by making up an K-map and minimizing it. However alot simpler expression can
be obtained if we note the fact that L needs to have avalid output ONLY when pattern IS
present. i.e. ONLY when P is 1.

13 12 11|10

—g
@Ii
@Il
(EII:I

- 1 0 1

1 0 1 -

Xl |o|r

Rest of combinations

Looking at the truth table it is easy to see that the output is

nothing but I;. An important thing to realize is that the

output L can be 0 and 1 even when pattern is not present

(when1=0000 L isOand I=1111,L is1, but according

to the specification of the problem that is allowed. Any

user of thisblock is expected to realize that L isNOT

valid when P=0).

Note: other smpleimplementation of L like I’ are EQUALLY valid by the same
argument).

L<H



Now that we have the blocks it is about time we started using them. So the naive way
would be

Bl Ll i Lo

And feed these four outputs to some logic which using them solves fBratieY .

However in the cases in which the pattern in between the two four inputs would not be
detected. (for e.d=0001 0100 or I=1110 1000) . Therefore three such blocks are
required each with Inputslélsls, Islslsl, and glalilgrespectively).

Now there is another problem here. Three blocks have SIX outputs , but the restriction is
to have gate with MAX 5 inputs. So we need to reduce the number of the inputs
somehow.

nz L LIk

Pi LE

Now note we do not really need 8 cases (all possible combinations of P2P1P0) because
of the relative priority involved. For example

If PO=1 we don't really need to see P2 or P1 because even if the pattern is
detected by these blocks as the PRSENT output will anyway remain one and the
locations oupuy will be either0O00 or 001 depending on where the pattern is. (Because
even if the middle blocklso detects the pattern it means it is at loca@b@ or 011
which will not be output as location as the pattern is also pressnaldér location !!)



We will use the notation first block isactiveif it isthe one which finally decides what the
output of Location would be . So first blcok (rightmost) is active when PO=1. Middle
oneis active when P1=1 AND PO=0.

So actually there are just four cases conceptually.

e Pattern not present (11) (none active)

» Pattern presence detected by rightmost (first) block (00) (first block active)

» Pattern presence detected by middie block AND NOT by first block.(01) (second
block active)

» Pattern presence detected ONLY by the third (Ieftmost) block.(02) (third block
active).

So we just need two bits to encode these fours cases. Which gives us the following truth
table corresponding to the encoding shown in the brackets above:

P2 | P1L | PO | PO; | POg £ B &
0ojlo[o]| 1 1 3
- 1 0 0
- 10 0 1
1100 1 0
This gives the following minimized Boolean expressions
PO,=PO'PY1’
PG=PO’(P2'+P1)
2 8

Now that we have the basic elements we can go ahead and see the full design at the block
level. (see LAST page).

Now the only thing left is to design the last block which takes igHR® L,,L1,Lo as
inputs and outputBRESENT andY,Y1Yo.

There are two concepts involved here which will help us minimize the design complexity
and the time required to think abou€it

The first of these is our old friend “Location can be garbage when the pattern is not
present”. Which means is like “don’t-care” in cases when P=0.



The second isto realize that inputs LO,L 1 and L2 affect the output Y only when their
respective block is the active (If you have forgotten what active is by now see above, and
| also suggest you start paying attention ©)

For example if middle block is active then the Location is 010 OR 011 depending on L1.
So The PRESENT output is very simple.
ItisO if and only if POoPO;=11
Which gives
PRESENT = (PO,PO; )’

Regarding Y,Y 1Y note the following

0 0 0 0 LO
0 1 0 1 L1

Note that is nice compact way of writing another way
That
If PoBPrare 11 then all the Y’s are don’t care
00 thenY=00Ly

and so on.
And the way teolve theseif-then is also pretty easy as read from the K-map.
Note an very interesting feature thatanid Y; do not depend on LO, L1 or L2 (the

location output of the 4-input blocks) !!. This because these inputs just will indicate
which block was finallyactive. And that is expected if you think a little more because

locations possible in the three blocks respectively are 000&001 , 010&011, and 100&101
respectively which means that only the last bit is different . Rest is common for both the

locations corresponding to the block!

So we get the following expressions for the outputs
Y, =P1P0’
Y,=P1'P0O
Yo=P1'PO'LO+P1'POL1+P1PQ’L2

So as ageneral trick (optional)

Inputs Output=F

Casel Outl

Case2 Out2

Case3 Out3
And so on

Then



—(EPU.'L

F = (Casel*Outl)+(Case2*Out2)+(Case3*Out3) ....

Note that the minterm expansion from Truth Table or Sum-of-Products is just a special

case of this in which Out’s can only Ber 1!!. Which means the minterms (Cases) for
which the Out id , are included and rest are not !!

<
K

@Lﬂ

3o
Li

EEEZENT {E
T {E
TL {E

L



o
[mE=g
m 1=
1 m -l

nz

ELOCK &

FEESENT
P T0 R
ENCODEE

o
|l

L&

FL

V654
B A S
FENC
ni
ELOCKD

Pl L0

POL

14

wE o %L E

13 THE FAMII3
5-THPUT
ELOCK




