
The Problem
Design a combinatorial circuit with 8-bit input I (I7…I0) which detects the patter 101 and
outputs :

• A single bit output P which tells whether the pattern is present at all or not.

• A 3-bit output Y(Y2Y1Y0) which tells the location at which the pattern is detected
and in case of multiple instance gives the smallest number amongst the locations .

For example
If I= 00001010 then Y=001 because it is located in location 1
 5 4 3 2 1 0

and if I=00010101 then Y=100 because the pattern is located at locations 0,2, and 4 and
of them 0 is the minimum.

• An additional constraint that s there is to divide problem into blocks so that NO
BLOCK has more than four input except one which can have five.

A point to note is the output Y is don’t care for when pattern is NOT detected, that is
when PRESENT is zero.

The Solution

First of all lets see a simpler problem which is just to solve the problem for four inputs
I(I3I2I1I0) and two single bit outputs ,P for present and L for location (note that the 3-bit
pattern can only be in two locations 0 or 1 so the only 1 bit required for location)

So more P to be one there are two cases
I = -101 or I = 101-

Which gives
P = I3I2’I 1 + I2I 1’I 0

Now to find out the expression for L. Obviously the expression for L can be found out
easily by making up an K-map and minimizing it. However a lot simpler expression can
be obtained if we note the fact that L needs to have a valid output ONLY when pattern IS
present. i.e. ONLY when P is 1.

I3 I2 I1 I0 L
- 1 0 1 0
1 0 1 - 1

Rest of combinations X

Looking at the truth table it is easy to see that the output is
nothing but I1. An important thing to realize is that the
output L can be 0 and 1 even when pattern is not present
(when I = 0000, L is 0 and I=1111, L is 1, but according
to the specification of the problem that is allowed. Any
user of this block is expected to realize that L is NOT
valid when P=0).
Note: other simple implementation of L like I2’ are EQUALLY valid by the same
argument).

Now that we have the blocks it is about time we started using them. So the naïve way
would be

And feed these four outputs to some logic which using them solves for the P and Y.
However in the cases in which the pattern in between the two four inputs would not be
detected. (for e.g. I=0001 0100 or I= 1110 1000) . Therefore three such blocks are
required each with Inputs I7I6I5I4 , I5I4I3I2 and I3I2I1I0 respectively).

Now there is another problem here. Three blocks have SIX outputs , but the restriction is
to have gate with MAX 5 inputs. So we need to reduce the number of the inputs
somehow.

Now note we do not really need 8 cases (all possible combinations of P2P1P0) because
of the relative priority involved. For example

If P0=1 we don’t really need to see P2 or P1 because even if the pattern is
detected by these blocks as the PRSENT output will anyway remain one and the
locations ouput Y will be either 000 or 001 depending on where the pattern is. (Because
even if the middle block also detects the pattern it means it is at location 010 or 011
which will not be output as location as the pattern is also present at smaller location !!)

We will use the notation first block is active if it is the one which finally decides what the
output of Location would be . So first blcok (rightmost) is active when P0=1. Middle
one is active when P1=1 AND P0=0.

So actually there are just four cases conceptually.
• Pattern not present (11) (none active)
• Pattern presence detected by rightmost (first) block (00) (first block active)
• Pattern presence detected by middle block AND NOT by first block.(01) (second

block active)
• Pattern presence detected ONLY by the third (leftmost) block.(02) (third block

active).

So we just need two bits to encode these fours cases. Which gives us the following truth
table corresponding to the encoding shown in the brackets above:

P2 P1 P0 PO1 PO0

0 0 0 1 1
- - 1 0 0
- 1 0 0 1
1 0 0 1 0

This gives the following minimized Boolean expressions

PO1=P0’P1’
PO0=P0’(P2’+P1)

Now that we have the basic elements we can go ahead and see the full design at the block
level. (see LAST page).

Now the only thing left is to design the last block which takes in PO0,PO1, L2,L1,L0 as
inputs and outputs PRESENT and Y2Y1Y0.

 There are two concepts involved here which will help us minimize the design complexity
and the time required to think about it J

The first of these is our old friend “Location can be garbage when the pattern is not
present”. Which means Y is like “don’t-care” in cases when P=0.

The second is to realize that inputs L0,L1 and L2 affect the output Y only when their
respective block is the active (If you have forgotten what active is by now see above, and
I also suggest you start paying attention J)

For example if middle block is active then the Location is 010 OR 011 depending on L1.
So The PRESENT output is very simple.
It is 0 if and only if PO0PO1=11
Which gives

PRESENT = (PO0PO1)’

Regarding Y2Y1Y0 note the following

P01 PO1 Y2 Y1 Y0

1 1 X X X
0 0 0 0 L0
0 1 0 1 L1
1 0 1 0 L2

Note that is nice compact way of writing another way
That

If P0P1 are 11 then all the Y’s are don’t care
 00 then Y=00L0

and so on.

And the way to solve these if-then is also pretty easy as read from the K-map.

Note an very interesting feature that Y2 and Y1 do not depend on L0, L1 or L2 (the
location output of the 4-input blocks) !!. This because these inputs just will indicate
which block was finally active. And that is expected if you think a little more because
locations possible in the three blocks respectively are 000&001 , 010&011, and 100&101
respectively which means that only the last bit is different . Rest is common for both the
locations corresponding to the block!

So we get the following expressions for the outputs
Y2 = P1P0’
Y1=P1’P0
Y0=P1’P0’L0+P1’P0L1+P1P0’L2

So as a general trick (optional)
Inputs Output=F
Case1 Out1
Case2 Out2
Case3 Out3

And so on

Then

F = (Case1*Out1)+(Case2*Out2)+(Case3*Out3) ….

Note that the minterm expansion from Truth Table or Sum-of-Products is just a special
case of this in which Out’s can only be 0 or 1!!. Which means the minterms (Cases) for
which the Out is 1 , are included and rest are not !!

