Remaining Topics
P ————————l

d Basic State Machine Design Study Problems
> Study Problems: 8.3, 8.5, 8.6, 8.7, 8.14, 9.2, 9.5,

Moore v. Mealy and Timing Issues
Communicating State Machines
State Minimization

State Assignment

State Machines in Verilog
Datapath and Control Architecture
Counter Based Design
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Computer Organization

CSE 370 - Fall 1999 - Introduction - 1



Mealy vs. Moore machines

d Moore: outputs depend on current state only
d Mealy: outputs may depend on current state and current inputs

O Our ant brain is a Moore machine
> output does not react immediately to input change

A We could have specified a Mealy FSM
> outputs have immediate reaction to inputs
> as inputs change, so does next state, doesn’t commit until clocking event

-1/01

react right away
to requests

W

10/10
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Timing Issues

A has
‘l Priority

00/0

1-/10

00/00
10/10

| sthis safe?

-1/01
Priority
GA
GB
RA R
RR N Logic
>
JAN
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Mealy Machine with Synchronizers

GA
GB >

CL

[0
YY

ASynchronous (or registered) Mealy machine
>registered state AND outputs
»>avoids ‘glitchy’ outputs
»easy to implement in PLDs

dMoore machine with no output decoding
»outputs computed on transition to next state rather than after entering

>View outputs as expanded state vector
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Comparison of Mealy and Moore machines

d Mealy machines tend to have less states
> different outputs on arcs (n”2) rather than states (n)

d Moore machines are safer to use
» outputs change at clock edge (always one cycle later)

> in Mealy machines, input change can cause output change as soon as
logic is done — a big problem when two machines are interconnected —
asynchronous feedback

O Mealy machines react faster to inputs
> react in same cycle — don't need to wait for clock
> in Moore machines, more logic may be necessary to decode state into
outputs — more gate delays after

logic for 2
inputs —> combinational inputs > oStputs % outputs
—> ! — > >
logic for
—> 9 —> > —> »| combinational >
- next state - « | logic for < _ |l
> »[reg > outputs —> outputs > logic for >»(€d
> > N > —> >»|  next state > A ?‘
. . |
state feedback state feedback
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Communicating State Machines (Decomposition

O Example: A busy highway is intersected by a little used farmroad

O Detectors C sense the presence of cars waiting on the farmroad
with no car on farmroad, light remain green in highway direction

if vehicle on farmroad, highway lights go from Green to Yellow to Red,
allowing the farmroad lights to become green

these stay green only as long as a farmroad car is detected but never
longer than a set interval

when these are met, farm lights transition from Green to Yellow to Red,
allowing highway to return to green

even if farmroad vehicles are waiting, highway gets at least a set interval
as green

farm road | car sensors
] highway
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Example: traffic light controller (cont’)

A Tabulation of inputs and outputs
inputs description Reset
reset place FSM in initial state

C detect vehicle on the farm road
O outputs description / @@

HG, HY, HR highway lights C

Q FG, FY, FR Farm road lights @

m=>>nN

U

0 Too many states

DO

CI
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Decomposition (Parallel Processes)

o
()
()
=)=

CI

ToEE

Decomposition lc
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Communicating finite state machines

d One machine's output is another machine's input
X

A
>

FSM 1 FSM 2

Y CLK

FSM1

o |tsreally one machine, designed astwo  y
* HW version of parallel processes

« Be careful w/ Mealy FSM2
Y
> CL >
JAN
> CL
CL > JAN
JAN
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Decomposition: traffic light controller

A Controller State diagram

States: HG, HY, FG, FY

ST—>TS=0 |TS
TL=0 [~
L1
TS=1 T
ST
%
TL=1
timer (TL+C)
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Finite state machine optimization

O State minimization
> fewer states require fewer state bits
> fewer bits require fewer logic equations

d Encodings: state, inputs, outputs
> state encoding with fewer bits has fewer equations to implement
= however, each may be more complex
> state encoding with more bits (e.g., one-hot) has simpler equations
= complexity directly related to complexity of state diagram
> input/output encoding may or may not be under designer control
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FSM Optimization: Traffic Light Controller

O State Minimization
d State Encoding
d Output Encoding

output encoding — similar problem
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Inputs Present State Next State Outputs

C TL TS ST H F

0 — — HG HG 0 Green Red

— 0 — HG HG 0 Green Red

1 1 — HG HY 1 Green Red

- - 0 HY HY 0 Yellow Red

- — 1 HY FG 1 Yellow Red

1 0 — FG FG 0 Red Green

0 — FG FY 1 Red Green

— 1 — FG FY 1 Red Green

- - 0 FY FY 0 Red Yellow

- - 1 FY HG 1 Red Yellow
SA1: HG = 00 HY = 01 FG =11 FY = 10 (gray code)
SA2: HG = 00 HY = 10 FG =01 FY =11 (sequential)
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)
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One-hot state assignment

d Simple
> easy to encode
> easy to debug

d Small logic functions
> each state function requires only predecessor state bits as input

A Good for programmable devices
> lots of flip-flops readily available
» simple functions with small support (signals its dependent upon)

A Impractical for large machines
> too many states require too many flip-flops
» decompose FSMs into smaller pieces that can be one-hot encoded

O Many slight variations to one-hot
> one-hot + all-0
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State Assignment: One Hot

SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000
(TLeC)'

(TL+CY'
SA3 (One Hot) : Read Next State logic from the state diagram!
NS3 = C'ePS2 + TLePS2 + TS'ePS3 NS2 = TSePS1 + CeTL'ePS2
NS1 = CeTLePSO + TS'ePS1 NSO = C'ePS0O + TL'ePSO + TSePS3
ST = CeTLePSO + TSePS1 + C'ePS2 + TLePS2 + TSePS3
H1 = PS3 + PS2 HO = PS1
F1 = PS1 + PSO FO = PS3
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State Assignment: Comparison of Results

O SA1l (Gray Code)
NS1 = CeTL'ePS1ePS0 + TSePS1'ePS0O + TSePS1ePSQ' + C'ePS1ePS0 + TLePS1ePS0O
NSO = CeTLePS1'ePS0Q' + CeTL'ePS1ePS0 + PS1'ePSO

ST = CeTLePS1'ePSQ" + TSePS1'ePSO + TSePS1ePSQ' + C'ePS1ePS0O + TLePS1ePSO
H1 = PS1 HO = PS1'ePSO
F1 = PS1' FO = PS1ePS0'

O SA2 (Sequential)
NS1 = CeTLePS1' + TS'ePS1 + C'ePS1'ePSO
NSO = TSePS1ePSQ' + PS1'ePS0O + TS'ePS1ePS0

ST = CeTLePS1' + C'ePS1'ePSO + TSePS1

H1 = PSO HO = PS1ePS0'
F1 = PSO' FO = PS1ePS0
0 SA3 (One Hot)
NS3 = C'ePS2 + TLePS2 + TS'ePS3 NS2 = TSePS1 + CeTL'ePS2
NS1 = CeTLePSO + TS'ePS1 NSO = C'ePS0O + TL'ePSO + TSePS3
ST = CeTLePSO + TSePS1 + C'ePS2 + TLePS2 + TSePS3
H1 = PS3 + PS2 HO = PS1
F1 = PS1 + PSO FO = PS3

But, if we already had a counter ...
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State assignment strategies

O Possible strategies
» sequential — just number states as they appear in the state table (Timer)
> random — pick random codes
» one-hot — use as many state bits as there are states (Small)
> output — use outputs to help encode states (Intersection)
> heuristic — rules of thumb that seem to work in most cases (Opcode)

d No guarantee of optimality — another intractable problem
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Heuristics for state assignment

d 1. Adjacent codes to states that share a common next state
> group 1's in next state ma .
g pI Q|Q o |3 /) 'K
: a | c c=i*a+i*b
i b |c Kk

O 2. Adjacent codes to states that share a common ancestor state

> group 1's in next state map
I Qlqr o bei *a i/j/®\k/|
i a |b j — Kk *
I c=k*a © ©

O 3. Adjacent codes to states that have a common output behavior
> group 1's in output map

Q| Q" O j=i *a+ i *c

I a D ] b=ij* ..
d ] dol%e :\i/j :\'/J

[ C
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General approach to heuristic state assignment

A All current methods are variants of this
> 1) determine which states “attract” each other (weighted pairs)
> 2) generate constraints on codes (which should be in same cube)

> 3) place codes on Boolean cube so as to maximize constraints satisfied
sum (distance*weighted)

A Different weights make sense depending on whether we are optimizing for
two-level or multi-level forms

d Can't consider all possible embeddings of state clusters in Boolean cube
> heuristics for ordering embedding
> to prune search for best embedding

> expand cube (more state bits) to satisfy more constraints -- eventually
becomes one-hot
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Example

Common Next State

S3: S1, A4, S5

S2: S1, S2, S5
Common Ancestor

S0: S1,4

S5: S2,.S3

HA: S2,.55

S1: S2,S3
b2b1b0 00 01 11 10
0 ? S4 S5 SO
1 ? S1 S2 S3

Can we satisfy all
Constraints?
How do | use empty cells?

Symbolically: S2 =1’ (S1+S2+34). I codesfor S1,S2,54 then logic issmpler

S1 = 1(0)
S4 = 1"(0)

|f codesfor S1, 4 are closethen logic issimpler
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Example: Output Encoding

|f state machine' s

s0 = [NEG] + [NOT] Ouputs are opcodes
sl =[INC] + [DEC] + [PASS] + [NEG] + [NOT]

s2 = [DEC] + [SUB] + [CMP] + [XNOR]

s3=[OR]

A =[ARITHMETIC]

s5 = [SH(L/R)]

s6 =[AND] + [OR] + [SHR]

s/ =[ARITHMETIC]

s8 = [SHL]

<= ([ADD] + [DEC]y  P3P2P1P0 |00 01 11 10
00 OF PASS [NC X
01 AND NMOT NEG %
11 SHR 3TOR DEC ADT
10 SHL HOR CHP SUB
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State Encoding: Output-based encoding

O Reuse outputs as state bits - use outputs to help distinguish states
» why create new functions for state bits when output can serve as well
> fits in nicely with synchronous Mealy implementations

Inputs Present State Next State Outputs (each row is unique

C TL TS ST H F

0 - - HG HG 0 00 10

- 0 - HG HG 0 00 10

1 1 - HG HY 1 00 10

- - 0 HY HY 0 01 10

- - 1 HY FG 1 01 10

1 0 — FG FG 0 10 00

0 — — FG FY 1 10 00

— 1 — FG FY 1 10 00

- - 0 FY FY 0 10 01

- - 1 FY HG 1 10 01
HG = ST"H1"HO' F1 FO" + ST H1 HO' F1' FO Output patterns are unique to states, we do not
HY = ST H1"HO' F1 FO’ + ST" H1' HO F1 FO’ need ANY state bits — implement 5 functions
FG = ST H1"HO F1 FO’ + ST’ H1 HO" F1’ FO’ (one for each output) instead of 7 (outputs plus
HY = ST H1 HO" F1' FO" + ST" H1 HO' F1’ FO 2 state bits)
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Current state assignment approaches

a For tight encodings using close to the minimum number of state bits
> best of 10 random seems to be adequate (averages as well as heuristics)
> heuristic approaches are not even close to optimality
> used in custom chip design

O One-hot encoding
> easy for small state machines
> generates small equations with easy to estimate complexity
» common in FPGAs and other programmable logic

O Output-based encoding
> ad hoc - no tools
» most common approach taken by human designers
> vyields very small circuits for most FSMs

d Tools for
> Partitioning (Decomposition)
> State and output Encoding
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Algorithmic approach to state minimization

d Goal - identify and combine states that have equivalent behavior

O Equivalent states:
» Same output

> for all input combinations, states transition to same or equivalent state
O Example: Sequence Detector: 010 or 110
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State minimization example: Sequence Detector

d Goal — identify and combine states that have equivalent behavior

O Equivalent states:
» Same output
> for all input combinations, states transition to same or equivalent state

O Sequence detector for 010 or 110

Input Next State Output

Sequence Present State | X=0 X=1 X=0 X=1

Reset SO S1 S2 0 0

0 S1 S3 S4 0 0

1 S2 S5 S6 0 0

00 S3 SO SO 0 0

01 S4 SO SO 1 0
S5 SO SO 0 0
S6 SO SO 1 0
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Row Matching Method

Input Next State Output
Sequence Present State | X=0 X=1 X=0 X=1
Reset SO S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 SO SO 0 0
01 S4 SO SO 1 0
10 S5 SO SO 0 0
11 S6 SO SO 1 0

(S0515253545556) S4 is equivalent to S6

(S051525355) (5456) S3 is equivalent to S5

(S0S51S52) (S3S5) (5456) S1 is equivalent to S2

(SO) (S3S5) (S1S2) (S45S6)
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Minimized FSM
O ———————————————————————————————————————————————————

Q State minimized sequence detector for 010 or 110

Input Next State Output
Sequence Present State| X=0 X=1 X=0 X=1
Reset SO S1' S1' 0 0
0+1 S1' S3' S4' 0 0
X0 S3' SO SO 0 0
X1 S4' SO SO 1 0

what about this case?

/
<F v
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More complex state minimization

O Multiple input example

inputs here
present next state output
state 00 01 10 11
SO SO S1 52 S5 1
S1 SO0 S3 S1 4 0
S2 S1 S3 S2 4 1
S3 S1 SO0 S4 S5 0
S4 SO S1 S2 S5 1
S5 S1 S4 SO S5 0

symbolic state
transition table
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Minimized FSM

a Implication chart method

> cross out incompatible states based on outputs
> then cross out more cells if indexed chart entries are already crossed out

minimized state table
(S0==54) (S3==S5)
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present next state output
state Q0 01 10 11

SO* SO0* S1 S22 S3* 1

S1 SO* S3* S1 S3*1 O

S2 S1 S3* S2  SO* 1

S3* S1 SO* SO* S3*| O



Minimizing incompletely specified FSMs

d Equivalence of states is transitive when machine is fully specified
A But its not transitive when don't cares are present

e.d., state output

SO -0 S1 is compatible with both SO and S2
S1 1- but SO and S2 are incompatible
S2 -1

d No polynomial time algorithm exists for determining best grouping of states
into equivalent sets that will yield the smallest number of final states
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Minimizing states may not yield best circuit

d Example: edge detector - outputs 1 when input changes from 0 to 1

+

coorr oo oo

+

—
o
—
o

| = = = O O O] X
= = O O+~ O Ol
O~ O O OO
O = OO O ol

17 =X (Qxor Q)
Q" =X Q1 Qg
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Another implementation of edge detector

A "Ad hoc" solution - not minimal but cheap and fast
ad State compression from 4 to 3 states not very helpful

Clock L
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Sequential logic implementation summary

A Models for representing sequential circuits
> abstraction of sequential elements
> finite state machines and their state diagrams
> inputs/outputs
> Mealy, Moore, and synchronous Mealy machines

d Finite state machine design procedure
> deriving state diagram
> deriving state transition table
> determining next state and output functions
» implementing combinational logic

d Implementation of sequential logic
» state minimization
» state assignment
> support in programmable logic devices
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Sequential logic examples

d Finite state machine concept
» FSMs are the decision making logic of digital designs
> partitioning designs into datapath and control elements
> when inputs are sampled and outputs asserted

O Basic design approach: a 4-step design process

d Implementation examples and case studies
> finite-string pattern recognizer
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General FSM design procedure

A (1) Determine inputs and outputs

d (2) Determine possible states of machine
» — state minimization

Q (3) Encode states and outputs into a binary code
» — state assignment or state encoding
» — output encoding
» — possibly input encoding (if under our control)

ad (4) Realize logic to implement functions for states and outputs
» — Verilog model for simulation and synthesis
» -- combinational logic implementation and optimization
» — choices made in steps 2 and 3 can have large effect on resulting logic
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Finite string pattern recognizer (step 1)

O Finite string pattern recognizer
> one input (X) and one output (2)

> output is asserted whenever the input sequence ...010... has been
observed, as long as the sequence 100 has never been seen

Q Step 1: understanding the problem statement
» sample input/output behavior:

X: 00101010010...
Z: 00010101000...

X:11011010010...
Z: 00000001000..
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Finite string pattern recognizer (step 2)

Q Step 2: draw state diagram
> for the strings that must be recognized, i.e., 010 and 100
» a Moore implementation

CSE 370 - Fall 1999 - Introduction - 36



Finite string pattern recognizer (step 2, cont’d)

A Exit conditions from state S3: have recognized ...010
> if next input is 0 then have ...0100 = ...100 (state S6)
> if next input is 1 then have ...0101 = ...01 (state S2)

Exit conditions from S1.

recognizes

strings of form ...0 (no 1 seen)
loop back to S1 if inputisO

Exit conditions from $4:

recognizes

strings of form ...1 (no O seen)
loop back to A if inputis 1

Oor1
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Finite string pattern recognizer (step 2, cont’d)

Q S2 and S5 still have incomplete transitions
> S2 = ..01; If next inputis 1,
then string could be prefix of (01)1(00)
S4 handles just this case
> S5 =..10; If next inputis 1,
then string could be prefix of (10)1(0)
S2 handles just this case

O Reuse states as much as possible
> look for same meaning

> state minimization leads to
smaller number of bits to
represent states

A Once all states have a complete
set of transitions we have a
final state diagram

CSE 370 - Fall 1999 - Introduction - 38



Finite string pattern recognizer (step 3)

A Verilog description including state assignment (or state encoding)

modul e string (clk, X rst, Q, Q, @@, 2); al ways @ posedge cl k) begin
i nput clk, X rst; if rst state = * SO;
out put Q, QL, @, Z el se
case (state)
reg state[0:2]; “S0: if (X) state = *S4 else state = Sl
‘define SO = [0,0,0]; //reset state “Sl: if (X) state = *'S2 el se state = * S1;
‘define S1 =1[0,0,1]; //strings ending in ...0 S2. if (X) state = "S4 el se state = * S3;
‘define S2 = [0,1,0]; //strings ending in ...01 “S3: if (X) state = *'S2 el se state = * S6;
‘define S3 = [0,1,1]; //strings ending in ...010 “S4: if (X) state = 'S4 el se state = * S5;
‘define S4 = [1,0,0]; //strings ending in ] S5 if (X) state = 'S2 el se state = ' S6;
‘define S5 = [1,0,1]; //strings ending in ...10 ‘S6: state = ‘ S6;
‘define S6 =[1,1,0]; //strings ending in ...100 default: begin
$display (“invalid state reached”);
assign QQ = state[O0]; state = 3’ bxxx;
assign QL = state[1]; endcase
assign @2 = state[2];
assign Z = (state == ' S3); end
endnodul e
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Finite string pattern recognizer

d Review of process
» understanding problem
= write down sample inputs and outputs to understand specification
> derive a state diagram

= write down sequences of states and transitions for sequences to be
recognized

» minimize number of states

= add missing transitions; reuse states as much as possible
> state assignment or encoding

= encode states with unique patterns
» simulate realization

= verify I/O behavior of your state diagram to ensure it matches
specification
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