Sequential logic
P ——————l

d Sequential circuits
> simple circuits with feedback
> latches
> edge-triggered flip-flops

d Timing methodologies
» cascading flip-flops for proper operation
> clock skew

A Asynchronous inputs
> metastability and synchronization

O Basic registers
> shift registers
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Sequential logic
e ————————————————

3 Up until now, we've built combinational circuits: outputs are just a function of
the inputs.

d Now, we get into circuits with feedback.

X1 —» —» 71
X2 —» —> 72
o Combinational o
o logic o
Xn —» — Zn
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Sequential logic diagram

X1 —» —» 71
X2 —» —» 72
o Combinational o
. logic o
Xn —» — Zn

A But, how do we know that the outputs Z1..Zn will stabilize?

A Isn't possible that the outputs will endlessly change, never reaching a stable
state?

A Yes, this can happen!
> We will have to make sure that perpetual oscillation doesn’t happen.

> Or that we actually WANT it.
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Sequential logic: what’s the point?

O But, feedback seems to make things more complicated (e.g.: need to make
sure things don’t oscillate). So what's the point?

Q Well, feeding outputs back into inputs lets us do interesting things, like...
» oscillating circuits

> memory, state

d Let's see an example of how this can be useful.
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Sequential circuits

A Circuits with feedback
> outputs = f(inputs, past inputs) = f(inputs, current state)
= next state = f(inputs, current state)

> State is distillation of knowledge about the past. Limited to the number of
bits of memory. n bits of memory = 2" possible states.

» mutex is inherently sequential
= same inputs can have different outputs -- depends on order of arrival.

example: mutex
\4 l next state State remembers
what clock which request came
current state first. Don't care
prevents , i about exactly when
runa_lwa}?/ inputs
. <€
' outputs
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Mutex Example (from Intro)

Q Point: The key to synchronous sequential logic is the storage element: latches

and flip-flops.
Input (RA,RB) | State Next State Output (GA,GB)
00 Wait Wait 00
01 Wait B Was First 01
10 Wait A Was First 10
11 Wait A Was First 10
00 A Was First Wait 00
01 A Was First B Was First 01
10 A Was First A Was First 10
11 A Was First A Was First 10
00 B Was First Wait 00
01 B Was First B Was First 01
10 B Was First A Was First 10
11 B Was First B Was First 01
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Experiment a little

A Let’s start experimenting with feedback. In assignment 4, you already built a
circuit with feedback:

Dizakle

e I

O This circuits oscillates because there are an odd number of inversions in the
feedback.

d So... what happens if we only have an even number of inversions in the
feedback? Let’s take a look.

CSE 370 - Fall 1999 - Introduction - 7



Cascaded inverters

i

SN v

IF Ais“1”, then B is “0”, which forces A again to “1”, which forces B again to
“0”, and so on. Thus, the ouput Y is “1”, and stays “1” forever. This is a
steady state (contrast this to the oscillator you did in your assignment).

Similarly, IF A is “0”, then Y will stay at “0” forever.
Wow, this looks like a bit of memory (if you ignore the magical IF...)

But, wait a second... How can this circuit store a value forever, it doesn’t
seem to be using any power: after all we are not applying any inputs...

This is a common fallacy! Remember, we don‘t draw the power supplies, but
they are ASSUMED to be there.
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Cascaded inverters (cont’d)

SN v

A In describing this circuit, we used the magical IF. But what happens if you
build this in the lab? Which state will it go in?

A Is there a possibility that A and B will just remain undefined (maybe both will
stay at 2.5 Volts...)

a Well, In theory this circuit has an undefined behavior. But if you build it, it
WILL go into one of the two states. Why?

> Say the circuit lands in an undefined state, maybe A=2.5 Volts, and B =
2.5 Volts.

> The only way you'll stay in this state is if you are in perfect equilibrium.

> But then, any perturbation in A or B will cause your circuit to spiral
towards one of the two states.

U

What's worse is that we don’t know what state it will go in!

U

That's not good... We need a way to guarantee that we land in the state we
WANT.

CSE 370 - Fall 1999 - Introduction - 9



Cascaded inverters with “Set”

P

A Think of the switch as a push button, with the default state as shown. When
you activate the button, it connects a “1” to the input of the first inverter.
When you release the button, it bounces back to the default state.

d When you push the button, the loop is broken. The effect is that it sets Y to
“1”. When we release the button, the value of "1” at the output remains
there.

Q We'll call this a “Set” (we're setting the output...). This is good, but this
means we can only store a “1”. What about a “0"?
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Cascaded inverters with “Set” and “Reset”

FBecet

TtDc_' pro

O Add a "Reset” switch, which makes the output Y go to 0. Again, when the
switch is released, Y stays at 0.

d What happens if none of the switches are pressed? Well, the value of Y that
was there before will stay there. This is called a “"Hold".

U

So, we have a one bit of memory that we can set, reset, or just leave as is.

U

Now, pushing switches is not a scalable solution. We need to control our
memory cell with digital signals:
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Cascaded inverters with “Set” and “Reset”

a
—— o
—

1

L. D’D I o :

—l
[
—

O Now, take a look at the black boxes above. Each has two inputs. When the
first input is 1, the output should go to 0, whereas when the first input is 0,
then the output should be the negation of the second input. What is that?
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Cascaded inverters with “Set” and “Reset”

a
—— o
—

1

L. D’D I o :

—l
[
—

O The black boxes are NORs! So we can redraw the circuit with NORs instead of
the black boxes:

=
Tt Eecet :
j __:) i: Rearranging
—> Q!
and renaming %

3
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Cross-coupled NOR gates
A
i)o—o—qul

K]

L

O This is called an R-S latch. We can build a table that shows how this circuit
behaves:

Q
hold
0

1
?77?

PR ooln
R or olm

d What happens in the 1, 1 state? At first, both Y and Y’ will be 0 (that’s
already a problem, since that means we can't call them Y and Y'...). But,
then, if you “release” the S and R inputs (thus, setting S=0, and R=0), Y and

Y’ will oscillate. Forever!
0 So... We DISALLOW this state.
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Cross coupled NAND gates

O We can do the use NAND gates aswell to build a latch
A Note the polarity of the inputs: S"and R’.

A You should convince yourself that you can derive this circuit in the same way
that we derived the circuit for cross coupled NOR gates.

S .—}Q
B
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Timing behavior

Reset Hold Set Reset Set | 100 Race
I \ L | ‘\I 7R \\l
\ \ i i
C L
S
Q
\Q
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State behavior or R-S latch

O Truth table of R-S latch behavior

S R |0
0O O |hold
0 1 0 00
1 0 1 0 0
1 1 | unstable
R i)O_H Q
S i)o—o—q Q'
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Theoretical R-S latch behavior

Q State diagram
> states: possible values

» transitions: changes
based on inputs

possible oscillation
between states 00 and 11
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Observed R-S latch behavior

a Very difficult to observe R-S latch in the 1-1 state
> one of R or S usually changes first

O Ambiguously returns to state 0-1 or 1-0
> a so-called "race condition"
» or non-deterministic transition
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R-S latch analysis

A Break feedback path to write equations

N
<
R Deemq QO
S ——Dﬂ_?ﬂ
S i)O—Q—( Q' R:
Q(t+A)
S R Q) Q(t+A)
0O 0 O 0 hold S
0 0 1 1 0] 0] X | 1
0 1 0 0 reset
0 1 1 0 QW) 1] o | x| 1
1 0 O L et R
1 0 1 1
1 1 0 X nhot allowed characteristic equation
1 1 1 X

Q(t+A) =S + R Q(t)

*Glitch on RS causes statetransition
Can’t have S,R = 1 at same time
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A Two-State System: Parity Checker

S=Q’'Data o -
R = QData . Fiip Flop ¢ ﬁ = OULPULS
[ D&TA .
— "~ Input
- |
Two States N

Q =0: Total sofar isODD
Q=1: Total sofar isEVEN
Characteristic Equation: Q (t+At) =S+ R'Q(t)
If the Data = 0: R,S = 0,0 No change in state (hold)!
If the Data = 1. Q(t+At) = ~Q(t)
Problems? Continuous cycling and glitches.
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Clocks
O ———————————————————————————————————————————————————

ad Timekeeper
> Use to prevent cycling
> Define time boundaries between data values on inputs
> Define time boundaries between successive states

A Clocks are regular periodic signals
> period (time between ticks)
> duty-cycle (time clock is high between ticks - expressed as % of period)

period
[«—
l«—>| duty cycle (in this case, 50%)
clock I S S O
/0O X X X X X

Defineinputsto be 1 value/cycle

}iA Allow inputsto change during part of cycle
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Using the Clock

—

} 3 FliESFlu}_] Q. —Ez' OUt utS
Tt Q " p
Combinational[— input
logice Problems?
When Clock Low: RS=00 (HOLD) (':3";‘? ﬁ'fcu'ts
When Clock Hi: ILCNES

Characteristic Equation: Q (t+At) =S+ R'Q(t)
If the Data = 0: R,S = 0, No change In state (hold)!
If the Data = 1. Q(t+At) = 1Q(t)
Works Great If one decision/cycle
No Wraparound: At>T,,
No Missed Transitions: At<T, + T,
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A Two-State System

e DR of
- s aof
Clock
Combinational -
B L ogic :

Want One State Decision/Cycle

T|:|: + T|_ > Thi chg ok stable chg ok stable
e Difficult to guarantee  dock _| — |
« Worry about inputstoo Tee To
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Preventing Wraparound

master | save
=D 5 LRI Py Sy =

‘ R » Flip Flop ]
S

Clock _C -

1

Clock = 0: master holds state(t), slave gets state(t)
Clock = 1. master getsstate(t+1)
slave holds state(t)
Clock 1-0: master holds state(t+1)
slave gets state(t+1)
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Master Slave Flip-Flop

master dave

Dy -
o o o
Clock | DQ_

Changes on inputs can’t propagate to outputs until
next clock cycle begins.

* No looping possible

 Combinational logic can’t be too fast

* Extra hardware

* Decide next state before input gate closes
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Two State System with Master-Slave

Clock

1

[>

I\ 11

Clock

Clock’

o o
bl

uy

1k

4

RS

g Flip Flop

Q

1 -~ DINOG VY

m
‘_E_'— 3 RS ] | e
L r Flip Flop . oo
o "
e
] DT,
M

T

ew

T T, Ty

One Trangition/Cycleif:
To+tT + Tyt Togawn<Tiow® Th
eEasier to guarantee
*\Worry about inputs!

«Still worry about hazards!
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The 1s catching problem

A In first R-S stage of master-slave FF
» 0-1-0 glitch on R or S while clock is high is "caught" by master stage
> leads to constraints on logic to be hazard-free

master stage slave stage

R"_—U_ R Q"P'—> -'__U— R Q
s*H s o> s o
s CLK >0
Set  Reset Caltch
ol e Solution?
K | t— +— Never use hold! Always
P Mast -
A — Outputs Actlv_ely set next state
Q Slave even If no change
Q' Outputs
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D flip-flop

d Make S and R complements of each other
> eliminates 1s catching problem, glitches eventually settle on R or S
> can't just hold previous value (must have new value ready every clock
period)
> value of D just before clock goes low is what is stored in flip-flop
> can make R-S flip-flop by adding logic to make D =S + R'Q

master stage slave stage
D T T
ot s o s o
CLK Do
10 gates
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Final Design for Parity Checker w/ D-FF

1

Claock [‘>:

uy 6 14 m

EWEH
= z Flip Flop g D—r z Flip Flop orn

ks

qﬁ JLCN K
s

In this case, D-FF approach isless efficient!

Can we makethis D-FF simpler ??
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Edge-triggered flip-flops

A More efficient solution: only 6 gates
> sensitive to inputs only near edge of clock signal (not while high)

D’ D

0

=
=

T

Clk=1——=

DI

Jly

0
\ holds D when e
clock goes low

holds D' when
/ clock goes low negative edge-triggered D

flip-flop (D-FF)

4-5 gate delays
Q

must respect setup and hold time
constraints to successfully
capture input

o

—n o

characteristic equation
Q(t+1) =D
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Functional Analysis

DI

;

/@

Y

Yl

S
Q2
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Clock Values Comment

1 Q1 = HOLD ForceR,Sto 0

1 Q2 =D FF2 waiting to
latch

1 Q3=D FF3 waiting to
latch

1->0 Q1 =D After 1 gate
delay R,S =
D,D’

120 Q2 =D FF2 latches

1->0 Q3=D FF2 latches

0 (D > D¥*) Q2 =0o0rD’

0 (D> D¥*) Q3=D Not a function
of D*

0 (D>D¥*) QL =D Not a function

(orig.) of D*




D-FF Timing

DI

Clk=1——=

DI

Setup time: Time data must be stable
befor e negedge of clock to ensure proper
latching. Where does D wait for falling
edge of clock?

at G2and G3. T, =2

Hold Time: How long after falling edge of
clock isD blocked (okay for D to change)

- G4 and G3inputs must be stable. Delay

from Clock to Blocked is1 (2 and 3).
T,=1

Propagation Delay: Timefrom Clock to

new Q
Gates 2,3 then gates5,6. T, = 2
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Timing Example

11110

n g Lo
CLOCK
I L

—-

_____{:::::IE?_____ DHE%

Minimum Clock Cycle?
Tclock = Tprop + Txor + Tsu

Minimum Txor?
Txor =0
the D-FF isinherently safe because Tprop > Thold
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Dealing with System Inputs

CLOCK

] (— reTs FDF

How do we make sure inputs don’t violate Tsu, Thold?
If inside the system — it Is our design problem
If from outside the system....add a synchronizer
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Synchronization failure

A Occurs when FF input changes close to clock edge
> the FF may enter a metastable state — neither a logic 0 nor 1 —
> it may stay in this state an indefinite amount of time
> this is not likely in practice but has some probability

@,

. @,

logic 0 logic 1

small, but non-zero probability
that the FF output will get stuck
in an in-between state

{logic 1
A
- ‘%/{/
/ N
logic 0 \::“__

Time —

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state
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Dealing with synchronization failure

A Probability of failure can never be reduced to 0, but it can be reduced
> (1) slow down the system clock
this gives the synchronizer more time to decay into a steady state;
synchronizer failure becomes a big problem for very high speed systems
> (2) use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance
> (3) cascade two synchronizers
this effectively synchronizes twice (both would have to fail)

asynchronous
input

synchronized

L L .
D Q D Q input

/\ /\

synchronous system
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Handling asynchronous inputs (cont’d)

d What can go wrong?
> input changes too close to clock edge (violating setup time constraint)

In .

] In is asynchronous and
fans out to DO and D1

Q | one FF catches the
signal, one does not
Q1 /\ inconsistent state may

be reached!
CLK I
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Handling asynchronous inputs

A Never allow asynchronous inputs to fan-out to more than one flip-flop
> synchronize as soon as possible and then treat as synchronous signal

Clocked
Synchronous
System

Synchronizer

Async Q0
Input D Q
/ l\ Clock
—b o Q1
/\| Clock
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Synchronizing Asynchronous Inputs

110
EEN
L 0 1
CLOCK
B I: 115
- mE
4<:I D&TA ASYHC_DATA
I > oD 0 {
L w
A
L2 \
EiEH
n 0 1 .
CLOTR : Synchronize
_ In one place
DaATa
CZR —— Tomakesure
‘ All see same
Input
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Comparison of latches and flip-flops

_ID Q-
JAN

|
CLK D ]

positive

edge-triggered
flip-flop

CLK

Qedge

Ty Qlatch ] ]

|
CLK

transparent
(level-sensitive)

latch behavior is the same unless input changes
while the clock is high
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Comparison of latches and flip-flops (cont’d)

Type

unclocked
latch

level-sensitive
latch

master-slave
flip-flop

negative
edge-triggered
flip-flop

Asynch set/reset

When inputs are sampled

When output is valid

always

clock high
(Tsu/Th around falling
edge of clock)

clock high
(Tsu/Th around falling
edge of clock)

clock hi-to-lo transition
(Tsu/Th around falling
edge of clock)

Used to set/reset latch

propagation delay from input change

propagation delay from input change
or clock edge (whichever is later)

propagation delay from falling edge
of clock

propagation delay from falling edge
of clock

propagation delay from rising edge
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Typical timing specifications

O Positive edge-triggered D flip-flop
> setup and hold times
> minimum clock width
» propagation delays (low to high, high to low, max and typical)

D T Th ‘ Tsu | Th
4@5 5nsS 20ns | 5ns|/
<—j ——><—>

CLK Tw 25ns \L
’ , \_

d

Tplh Tphl
Q 25ns 40ns

all measurements are made from the clocking event that is,
the rising edge of the clock
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Cascading edge-triggered flip-flops

Q Shift register
> new value goes into first stage
> while previous value of first stage goes into second stage
> consider setup/hold/propagation delays (prop must be > hold)

Qo0 Q1
D

IN ouT

CLK

CLK [ 1 [ | [ 1 [ 1 [ [ 1 [ 1
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Cascading edge-triggered flip-flops (cont’d)

O Why this works

» propagation delays exceed hold times
> clock width constraint exceeds setup time

> this guarantees following stage will latch current value before it changes
to new value

In || |
%]”s— %]“s— timing constraints
Q0 guarantee proper
T T operation of
3R *13Rs cascaded components
Q1
assumes infinitely fast
CLK | L distribution of the clock
T, T,
2ns

2ns
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Summary of latches and flip-flops

a Development of D-FF
> level-sensitive used in custom integrated circuits
= can be made with 4 switches
> edge-triggered used in programmable logic devices
> good choice for data storage register

A Historically J-K FF was popular but now never used
> similar to R-S but with 1-1 being used to toggle output (complement state)
> good in days of TTL/SSI (more complex input function: Q+ = JQ' + K'Q
> not a good choice for PALs/PLAs as it requires 2 inputs
> can always be implemented using D-FF

O Preset and clear inputs are highly desirable on flip-flops
> used at start-up or to reset system to a known state

Q T-Flip Flop: Q+ =Qxor T

d Terminology:
> Level-Sensitive = Latch
» Edge Triggered = Register
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