CSE370: Introduction to Digital Design

O Course staff
» Larry Arnstein, ...

O Course web
» www.cs.washington.edu/education/courses/370/99au/

O This week: Introduction
> Keywords “digital” and “design”
» Examples and basics

d Content and Grading
> Weekly homeworks = 40%
> Class participation = 10%
> Midterm = 25%
> Final (comprehensive) = 25%

O Software: DesignWorks

CSE 370 - Fall 1999 - Introduction - 1

What is Digital?

What isn’t Digital ?Analog

_
A_n alog /\/\/ Anal 0g);. Signalg
Signal 5 Ampl ifier Output

Ke\/ DeSIC]n | ssue: Examples:
Freguency response Bullhorn
*Noise Filter
Strengths Weaknesses
Compact, and Error Tolerant “Lossy”-- Subject to distortion,
Onewirecan carry a Symphony good for media, not computation

CSE 370 - Fall 1999 - Introduction - 2

What’s Digital

Input signal
“regarded” as

Digital m __,| Digtal
Amplifier

Key ISssues:
Switching Speed
and Delay

Weaknesses

| nefficient

*Rely on parallelism to get things done
*(Sega Dreamcast isa 128 Bit M achine)

*Error intolerant

Output
binary signal is
restored or
RV “quantized”

Ternary

Strengths

L ossless --Only loss is quantization.
*Great for computation!
*Highly reproducible and shrinkable

CSE 370 - Fall 1999 - Introduction - 3

The Digital Gate (Electronic)
—-_ »_

 Value of output determined by values of inputs
* The output strength (voltage or current) must be high enough
to activate several similar devices.

A
—>
> —>>
inputs g M ake output
> Decision and MW A
> Restore strength —
t > —>

Digital Logic Gate — —

Allows complex computation with no degradation of information

CSE 370 - Fall 1999 - Introduction - 4

An Example: The CMOS Inverter

il

A } Z = not(A)

PMOS
Transistor sl
A
i
nMOS
Transistor

nMOS + pMOS = CMOS

MOS Transistors

The resistance of the “channel” is
determined by the voltage of the
gate.

A positive voltage on the input
reduces the resistance of the
NnMOS channel, and increases the
resistance of the pMOS channel.

Key properties:

Very small input current (leakage
only), very high “gain” amplifier
Weak input - Strong Output

CSE 370 - Fall 1999 - Introduction - 5

Basic Units of Digital Computation in CMOS

A ‘ >: Z = not(A)

the NOT gate

Z =not(A or B)

atrue
elll
A il Z =not(A and B)
Z =not(A) or not(B)
o N A~
sl
false e NAND gate A
A
Z

Z =not(A) and not(B)

[A
Z
B?

CSE 370 - Fall 1999 - Introduction - 6

the NOR gate

Other forms of digital hardware

oo o000 00D0D0p

First Digital System: Molecular Structure such as DNA
Beads -- the abacus (~500 BC)
Mechanisms -- the position of a gear or shaft (1600’s -- Babbage 1800’s)

Electromechanisms -- relays (Zuse 1900's)

Electrical Currents (Tubes, Bipolar Transistors 1930's-1970’s)

Voltages (CMOS 1980’s-present)
Fiber Optics -- Light or Light off

Dynamic RAM -- Charged or Discharged capacitor (on MOS gate)

Nonvolatile memory (erasable) -- Trapped electrons or no trapped electrons

Programmable ROM -- Fuses

Bubble memory -- Presence or absence of a magnetic bubble

Magnetic disk -- Direction of magnetic flux

Compact disc -- the Presence or absence of a pit

CSE 370 - Fall 1999 - Introduction - 7

What is design (cont’d)?

Q What is engineering design? ------------

Synthesis [*€ Analysis

) . . design database
O What is logic design?

> Constraints =

Function, Cost, Performance, Power, Servicability, Safety, Project
Schedule, etc.

> Database =

Schematic, Layout, Algorithm, Mechanical Drawing -- whatever the next
person in line needs (mfg’r, technician).

> Analysis = S

imulate it, Cost it out, Total up the power, Build a prototype, Prove that it
works (formal or otherwise)

> Synthesis = Making engineering decisions based on available information

in a reasonable amount of time + LOtS of creativity!

CSE 370 - Fall 1999 - Introduction - 8

What can go wrong?

Inefficiency due to: Iteration due to:
» lack of automation * iInexperience (expertise intensive)
» lack of design re-use » sub-optimal tool performance
Y Y

Synthesis Analysis

design database

Failure due to:
e Unreasonable constraints
* Limited access to the design space

CSE 370 - Fall 1999 - Introduction - 9

What we will learn in 370

Thisisthe watershed course for
understanding how all computers work.

The Future?

And...

Lots of practical stuff
including design tools, hardware | 1N€Modern Era-- Computers

technologies, etc.

The Tertiary -- Sequential Logic

The Jurrasic -- Math Hardware

‘The Cambrian -- Combination Logic

‘ The Primordial Soup -- True, False, One, Zero
(Binary Number Systems)

CSE 370 - Fall 1999 - Introduction - 10

Applications of logic design

0 Conventional computer design
» CPUs, busses, peripherals

O Networking and communications
> phones, modems, routers

O Embedded products
> in cars, toys, appliances, entertainment devices

d Scientific equipment
» testing, sensing, reporting

O The world of computing is much much bigger than just PCs!

CSE 370 - Fall 1999 - Introduction - 11

CSE 370: concepts/skills/abilities

Understanding the basics of logic design (concepts)

Understanding sound design methodologies (concepts)

Modern specification methods (concepts)
Familiarity with a full set of CAD tools (skills)

Appreciation for the differences and similarities (abilities)
in hardware and software design

U 00000

New ability: Understand the basic tools and techniques for designing
digital systems, including special purpose hardware and general purpose
computers, using a variety of implementation technologies such as LSI
and programmable logic

CSE 370 - Fall 1999 - Introduction - 12

Computation: abstract vs. implementation

O Up to now, computation has been a mental exercise (paper, programs)

O This class is about physically implementing computation using physical
devices that use voltages to represent logical valuesdealing with constraints

O Basic units of computation are:

> representation: "0", "1” or True/False

» assignment: X =Y

> data operations: X+y—-5

> control:
sequential statements: A; B; C
conditionals: if x==1 then vy
loops: for(i=1;i==10, i++)
procedures: A; proc(...); B;

O We will study how each of these are implemented in hardware and
composed into computational structures

CSE 370 - Fall 1999 - Introduction - 13

System Components
 ———-y~0

. Inguts
O Logic and Storage Carera.and Mic
O Power supply K eboard and Mouse

Motion Detector

O Heat removal Physical Properties (V,T,P,..})

d Digitization and I/O Location, Orientation
etc.
D/A
Power Logic &
Mgt Storage
AID _ Outputs
Displays and Indicators
Speakers
Actuators (Valves, Motors, ..
etc.

CSE 370 - Fall 1999 - Introduction - 14

Representation of digital designs

Physical devices (transistors, relays)

Switches
Truth tables
Boolean algebra

Gates
Waveforms

Finite state behavior

scope of CSE 370
Register-transfer behavior /

Concurrent abstract specifications

O oo 0000000

CSE 370 - Fall 1999 - Introduction - 15

Combinational vs. sequential digital circuits

0 A simple model of a digital system is a unit with inputs and outputs:

—> —>
inputs ———» system > outputs
_. 5 LN

A— n >Sum
B— »Carry

O Combinational means "memory-less"

> a digital circuit is combinational if its output values
only depend on its input values

> A given input will also have the same steady state output, no matter

what has come before

CSE 370 - Fall 1999 - Introduction - 16

Combinational logic symbols

O Common combinational logic systems have standard symbols called

logic gates

> Buffer, NOT

>
» AND, NAND

1

» OR, NOR

0 >

-

easy to implement

with CMOS transistors
(the switches we have
available and use most)

CSE 370 - Fall 1999 - Introduction - 17

Sequential logic

O Seguential systems

> exhibit behaviors (output values) that depend not only
on the current input values, but also on previous (sequence of) input values

A In reality, all real circuits are sequential

> because the outputs do not change instantaneously after an input change

why not, and why is it then sequential?

O A fundamental abstraction of digital design is to reason (mostly) about

steady-state behaviors

> look at the outputs only after sufficient time has elapsed for the system
to make its required changes and settle down

RegA —

RegB —

“Mutex”
AcCcCess
Controller

— GrantA
— GrantB

Output depends on who got therefirst -- sequence!
Problem: How to guarantee GrantA& GrantB ==

CSE 370 - Fall 1999 - Introduction - 18

One at a Time...Synchronous Sequential

O Ignore changes on inputs except during a specific time window

> Special signal -- the clock determines when to consider new inputs

A Isolate “memory” from “logic”

» during a clock transition, compute new state and outputs using inputs

and old state.

> Assume inputs and state are stable during the clock transition

Inputs

>

U U clock s

>

Memory

., Logic
(State)

LU clock

> 8 bit counter

YYY Y YV oY Y

output

CSE 370 - Fall 1999 - Introduction - 19

» Ouputs

Summary

d Combinational:
> input A, B
> wait for clock edge
> observe C
> wait for another clock edge
> observe C again: will stay the same

O Sequential: AT .
> input A, B B —»
> wait for clock edge
> observe C T Clock

> wait for another clock edge
> observe C again: may be different

CSE 370 - Fall 1999 - Introduction - 20

Abstractions and Simplifications

O How we make life easy for ourselves

> Quantization and Amplification -- Lossless propagation of data in
exchange for low bandwidth

> Generally stick to binary represntation
> Basic logic gates as building blocks in exchange for complex transistor
networks (density)

> Clearly defined state transitions on clock edges. Assume inputs stable
during clock transistions.

O Tools for managing complexity that we will see
> Truth tables and Boolean algebra to represent combinational logic
> Binary arithmetic to manipulate groups of signals
> State diagrams to represent sequential logic
» Hardware description languages to represent digital logic
» Waveforms to represent temporal behavior

CSE 370 - Fall 1999 - Introduction - 21

An example

O Calendar subsystem: number of days in a month (to control watch display)
> used in controlling the display of a wrist-watch LCD screen

> inputs: month, leap year flag
> outputs: number of days
> No need to remember previous entries or results to give correct output

CSE 370 - Fall 1999 - Introduction - 22

Implementation in software

| nteger nunber _of days (nonth, |eap year flag) {
swtch (nonth) {
case 1. return (31);

case 2: if (leap_year flag == 1) then return (29)
el se return (28);

case 3. return (31);

case 12: return (31);
default: return (0);

Clue: Return valueisunrelated to previousresult call

CSE 370 - Fall 1999 - Introduction - 23

Implementation as a combinational system

d Encoding:
> how many bits for each input/output?
> binary number for month month leap
> four wires for 28, 29, 30, and 31 l l l l l
O Behavior:

> combinational
> truth table
specification l l l

1 28 29 30 31

oo
\o}
o

month leap
0001 —

0010
0010
0011
0100

|l | mO
R OOOOW
O OO W

1100
1101
111-
0000

(elolole OO OIN
OO o OO OOIN

[I I |
OO0
OO

CSE 370 - Fall 1999 - Introduction - 24

Combinational example (cont’d)

O Truth-table to logic

symbol

> 28 = 1 when month=0010 and leap=0
> 28 = ml'em2'em3em4's|leap’

> 31 = 1 when month=0001 or month=0011 or

or or

> 31 = (ml'em2'em3'em4) + (ml'em2'em3em4) + ...
» 31 = can we simplify more?

o

month

leap

. mont

symbol

for and

1100

symbol
or not

(mlem2em3'em4’)

co

O

0001

NN
e

0010
0010
0011
0100

1100
1101

i

28 2

_f
!
9

4
|
30

111-
0000

CSE 370 - Fall 1999 - Introduction - 25

Il | m, O

I 1 1 © OCOOHOIN

I 1 1 © OO OOIN

HOOOOW

[I

OoOrRrOORF|W

N

Example of “multilevel logic”
31 speed v. cost, paralle v. serial

Another example

O Door combination lock:
> Enter three values, if they match the combination then the door opens;
> inputs: values V1, V2, V3
> outputs: door open/close

O Unspecified
» What happens if wrong combination is entered?
» How do we know when a new combination is starting?

> Are V1-V3 on different sets of wires or are the sequenced on the same

set of wires? If sequenced how do we know when a new number has
been entered?

» How does it get locked again after being opened?

CSE 370 - Fall 1999 - Introduction - 26

Refinement of Specification

Q All values come in on a single set of wires:

So its sequential so we need a clock to control the
sequence.

Q Any other problems?

Yes -- might not get new value every clock cycle — need
another input NEW — we could use new for clock, but

usually want our subsystem to be in synch with other Vv
sub-systems so we don’t have user provided clocks. new 4\1\ reset
d How to handle wrong combination and relocking? l i
Add a reset input
clock
—>

|

open/closed

CSE 370 - Fall 1999 - Introduction - 27

Sequential example (cont’d): abstract control

O Finite-state diagram
» states: 5 states: S1, S2, S3, Open, Err
= represents synchronization points in execution of machine
= each state has outputs
> transitions: 6 from state to state, 5 self transitions, 1 global
= changes of state occur when clock says it's ok
= based on value of inputs and previous state
» inputs: reset, new, V
> output: open/closed

Start
[closed]

First
[closed]

reset —»

not new not new not new

CSE 370 - Fall 1999 - Introduction - 28

Sequential example implementation

O Internal structure: Datapath and Control

» data-path (combinational logic for multi-bit numbers)
= storing and operating on n-bit numbers

> control

= decide what to do next based on datapath results, state, and inputs

value nexl ieset
datapath controller
Cll C|2 C|3
multiplexer o NUX | //
v | contro <
comparator
equal

l

open/closed

CSE 370 - Fall 1999 - Introduction - 29

<«——clock

Implementing the Controller

O Finite-state machine l ERR
> refine state diagram to include internal structure

not new not new not new

> generate state table (much like a truth-table)
next

reset new equal state | state mux open/closed
1 - - - S1 C1 closed

0 0 - S1 S1 C1 closed

0 1 0 S1 ERR - closed

0 1 1 S1 S2 C2 closed

0 1 1 S3 OPEN - open

CSE 370 - Fall 1999 - Introduction - 30

Design of Controller

O Encode state table

> state can be: S1, S2, S3, OPEN, or ERR
» needs at least 3 bits to encode: 000, 001, 010, 011, 100
= and as many as 5: 00001, 00010, 00100, 01000, 10000
= choose 4 bits: 0001, 0010, 0100, 1000, 0000

> output mux can be: C1, C2, or C3
= needs 2 to 3 bits to encode
= choose 3 bits: 001, 010, 100

> output open/closed can be: open or closed
= needs 1 or 2 bits to encode
= choose 1 bits: 1, 0

next good choice of encoding!
reset new equal state | state mux open/closed
1 — — — 0001 001 0 mux is identical to
0 0 - 0001 | 0001 o001 0 last 3 bits of state
0 1 0 0001 | 0000 - 0
0 1 1 0001 | 0010 010 0 open/closed is
identical to first bit
0 1 1 0100 | 1000 - 1 of state

CSE 370 - Fall 1999 - Introduction - 31

Implementation of Controller w/ Datapath

O Implementation of the controller

special circuit element, called a

MUX
CONTROL EQUAL NEXT STATE register, for storing inputs on
STABLE STABLE STABLE clock transition

value

datapath new equal reset
Cl|] [C2] [C3 ‘
[[[MUX v h 4]
multiplexer < comb. logic
v I control L— v
comparator clock
equal
v
open/closed

CSE 370 - Fall 1999 - Introduction - 32

Design hierarchy

system

/\

data-path control

data : state combinational
memory Multiplexer (Cn(%?tﬂ?rator memory logic

memory logic

N,

switching
networks
(Gates and Wires)

CSE 370 - Fall 1999 - Introduction - 33

Summary

O That was what the entire course is about (Almost)

» converting solutions to problems into combinational and sequential
networks effectively organizing the design hierarchically

> doing so with a modern set of design tools that lets us handle large
designs effectively

> taking advantage of optimization opportunities

O Learn where software and hardware come together
» How does a software program get executed on a digital hardware
system?

CSE 370 - Fall 1999 - Introduction - 34

What is happening now in digital design?

O Big change in the way industry does hardware design over last few years
> larger and larger designs
> shorter and shorter time to market
> cheaper and cheaper products

O Scale
> pervasive use of computer-aided design tools over hand methods
> multiple levels of design representation

Q Time
> emphasis on abstract design representations
> programmable rather than fixed function components
» automatic synthesis techniques
> importance of sound design methodologies

O Cost
> higher levels of integration
> use of simulation to debug designs

CSE 370 - Fall 1999 - Introduction - 35

Some Basics. Lecture Overview

O Today
> The basics: Electronics, binary numbers, base conversion

» Number systems
= 2's complement numbers
» Combinational logic
= Logic functions and truth tables

CSE 370 - Fall 1999 - Introduction - 36

The basics - binary numbers

PN

O Binary (base 2) Number Representation
> lowV - 0
> hiVv - 1

O Base conversion (binary, octal, decimal, hexadecimal)
> Positional number system
= 101,= 1x22+0x21+1x2° = 5,
= 1015= 1x82+0x81+1x8° = 65,
= 101,,= 1x162+0x161+1x16° = 257,
» Conversion between binary/octal/hex
= Binary: 10011110001
= Octal: 10| 011|110 | 001=2361,
= Hex: 100 | 1111 | 0001=4F1,,

O Addition and subtraction are trivial, but worth practicing
> See Katz, appendix A

CSE 370 - Fall 1999 - Introduction - 37

Number systems

O How do we write negative binary humbers?

O Historically: Three approaches
> Sign and magnitude
» One’s complement
» Two’s complement

0 Two’'s complement makes addition and subtraction easy
> Used almost universally in present-day systems

O Fractional Numbers

O Floating Point Represenations

CSE 370 - Fall 1999 - Introduction - 38

Sign-magnitude Representation

O The most-significant bit (msb) is the sign digit
> 0 = positive
> 1 = negative

0 The remaining bits are the humber’s magnitude
O Benefit: easy to perform negation: just flip MSB

O Problem 1: Two representations for zero
> 0 = 0000 and also-0 = 1000

O Problem 2: Arithmetic is cumbersome

1001
+ 0011 |nstead, must change order and
1100 perform substraction
011
- 001
= 0010

CSE 370 - Fall 1999 - Introduction - 39

One’s complement

O Negative number: Bitwise complement of positive humber

> 0011 = 3,
> 1100 = -3, -
O Almost solves the arithmetic problem w
-0 0
110 (-1)
= 000 101 010/,
t "2_100 011
— 1 3

O Remaining problem: Must compensate for two zeros
> Add (or subtract) carry when (MSB carry & opposite sign)
» Overflow when (MSB carry & same sign)

CSE 370 - Fall 1999 - Introduction - 40

Two’s complement

0 Negative number: Bitwise complement plus one
> 0011 = 3,4,
> 1101 =-3,,

O Shift the 1's complement number wheel to eliminate -0

O msb is still the sign digit
» 0 = positive
» 1 = negative

O No need to compensate for

" 010/,

-/ 3

T overtiow

CSE 370 - Fall 1999 - Introduction - 41

Twos complement (con’t)

O Complementing a complement restores the original number

O Arithmetic is easy
> We ignore the carry
= Same as a full rotation around the wheel

> Subtraction = negation and addition
= Easy to implement in hardware

111 (-1
+ 010 (+2)
= 001

(ignorecarry)

CSE 370 - Fall 1999 - Introduction - 42

Where are we now?

The Future?

The Modern Era -- Computers

The Tertiary -- Sequential Logic

The Jurrasic -- Math Hardware

‘The Cambrian -- Combination Logic

‘ The Primordial Soup -- True, False, One, Zero
(Binary Number Systems)

CSE 370 - Fall 1999 - Introduction - 43

