
Hardware Description Languages
and Sequential Logic

  Flip-flops
  representation of clocks - timing of state changes
  asynchronous vs. synchronous

  Shift registers
  Simple counters

Autumn 2010 CSE370 - XV - Sequential Verilog 1

Flip-flop in Verilog

  Use always block's sensitivity list to wait for clock edge

Autumn 2010 CSE370 - XV - Sequential Verilog 2

module dff (clk, d, q);

 input clk, d;
 output q;
 reg q;

 always @(posedge clk)
 q = d;

endmodule

More Flip-flops

  Synchronous/asynchronous reset/set
  single thread that waits for the clock
  three parallel threads – only one of which waits for the clock

Autumn 2010 CSE370 - XV - Sequential Verilog 3

module dff (clk, s, r, d, q);
 input clk, s, r, d;
 output q;
 reg q;

 always @(posedge clk)
 if (r) q = 1'b0;
 else if (s) q = 1'b1;
 else q = d;

endmodule

module dff (clk, s, r, d, q);
 input clk, s, r, d;
 output q;
 reg q;

 always @(posedge r)
 q = 1'b0;
 always @(posedge s)
 q = 1'b1;
 always @(posedge clk)
 q = d;

endmodule

Synchronous Asynchronous

Incorrect Flip-flop in Verilog

  Use always block's sensitivity list to wait for clock to change

Autumn 2010 CSE370 - XV - Sequential Verilog 4

module dff (clk, d, q);

 input clk, d;
 output q;
 reg q;

 always @(clk)
 q = d;

endmodule

Not correct! Q will
change whenever the
clock changes (both edges),
not just on one edge.

Blocking and Non-Blocking Assignments

  Blocking assignments (X=A)
  completes the assignment before continuing on to next statement

  Non-blocking assignments (X<=A)
  completes in zero time and doesn’t change the value of the target

until a blocking point (delay/wait) is encountered
  Example: swap

Autumn 2010 CSE370 - XV - Sequential Verilog 5

always @(posedge CLK)
 begin
 temp = B;
 B = A;
 A = temp;
 end

always @(posedge CLK)
 begin
 A <= B;
 B <= A;
 end

always @(posedge CLK)
 begin
 A = A ^ B;
 B = A ^ B;
 A = A ^ B;
 end

always @(posedge CLK)
 begin
 A = B;
 end

always @(posedge CLK)
 begin
 B = A;
 end

always @(posedge CLK)
 begin
 A <= B;
 end

always @(posedge CLK)
 begin
 B <= A;
 end

Swap

  The following code executes incorrectly
  One block executes first
  Loses previous value of variable

  Non-blocking assignment fixes this
  Both blocks are scheduled to execute by posedge CLK

Autumn 2010 6 CSE370 - XV - Sequential Verilog

Register-transfer-level (RTL) Assignment

  Non-blocking assignment is also known as an RTL assignment
  if used in an always block triggered by a clock edge
  all flip-flops change together

Autumn 2010 CSE370 - XV - Sequential Verilog 7

// B,C,D all get the value of A
always @(posedge clk)
 begin
 B = A;
 C = B;
 D = C;
 end

// implements a shift register
always @(posedge clk)
 begin
 B <= A;
 C <= B;
 D <= C;
 end

Shift register in Verilog

Autumn 2010 CSE370 - XV - Sequential Verilog 8

module shift_register (clk, in, out);

 input clk;
 input in;
 output [0:3] out;

 reg [0:3] out;

 initial begin
 out = 0; // out[0:3] = {0, 0, 0, 0};
 end

 always @(posedge clk) begin
 out = {in, out [0:2]};
 end

endmodule

Activity

 initial
 begin
 A = 1’b0; B = 1’b0; C = 1’b0; D = 1’b0;
 end

always @(posedge clk)
 begin
 A <= ~D;
 B <= A;
 C <= B;
 D <= C;
 end

Autumn 2010 CSE370 - XV - Sequential Verilog 9

{A, B, C, D} <= {~D, A, B, C};

D Q D Q D Q D Q IN

OUT1 OUT2 OUT3 OUT4

CLK

Binary Counter in Verilog

module binary_counter (clk, c8, c4, c2, c1);

 input clk;
 output c8, c4, c2, c1;

reg [3:0] count;

 initial begin
 count = 0;
end

always @(posedge clk) begin
 count = count + 4’b0001;
end

 assign c8 = count[3];

 assign c4 = count[2];
 assign c2 = count[1];
 assign c1 = count[0];

endmodule

Autumn 2010 CSE370 - XV - Sequential Verilog 10

module binary_counter (clk, c8, c4, c2, c1, rco);

 input clk;
 output c8, c4, c2, c1, rco;

 reg [3:0] count;
 reg rco;

 initial begin . . . end

 always @(posedge clk) begin . . . end

 assign c8 = count[3];
 assign c4 = count[2];
 assign c2 = count[1];
 assign c1 = count[0];
 assign rco = (count == 4b’1111);

endmodule

add RCO

8-bit register of Lab 5

Autumn 2010 CSE370 - XV - Sequential Verilog 11

module register_8_bit (
 input [7:0] D,
 input clear,
 input store,
 output reg [7:0] Q);

// buttons are active low so look for
// negedges and test for !clear

always @(negedge clear, negedge store)
 if (!clear) Q <= 8'b0000_0000;
 else Q <= D;

endmodule

Parallel versus serial execution

  assign statements are implicitly parallel
  “=” means continuous assignment
  Example

 assign E = A & D;
 assign A = B & C;

  A and E change if B changes

  always blocks execute in parallel
  always @(posedge clock)

  Always block internals not necessarily parallel
  “=” is a blocking assignment (sequential)
  “<=” is a non-blocking assignment (parallel)

B
C

D

A

E

Autumn 2010 12 CSE370 - XV - Sequential Verilog

Sequential logic summary

  Fundamental building blocks of circuits with state
  latch and flip-flop
  R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop

  Timing methodologies
  use of clocks
  cascaded FFs work because Tprop > Thold

  beware of clock skew
  period > TpropFF + TpropCL + Tsetup

  Basic registers
  shift registers
  counters

  Hardware description languages and sequential logic
  always (@ posedge clk)
  blocking and non-blocking assignments

Autumn 2010 CSE370 - XV - Sequential Verilog 13

Verilog review/style

Autumn 2010 CSE370 - XV - Sequential Verilog 14

Variables in Verilog

  wire
  Connects components together

  reg
  Saves a value

  Part of a behavioral description
  Does NOT necessarily become a register when you synthesize

  May become a wire

  Important rule
  Declare a variable as reg if it is a target of an assignment

statement inside an always block
  Continuous assign doesn’t count

Autumn 2010 15 CSE370 - XV - Sequential Verilog

Always block

  A construct that describes a circuit’s behavior
  begin/end groups multiple statements within an always block
  Can contain if, for, while, case
  Triggers at the specified conditions in sensitivity list: @(…)

module register(Q, D, clock);
 input D, clock;
 output Q;
 reg Q;

 always @(posedge clock) begin
 Q <= D;
 end
endmodule

Autumn 2010 16 CSE370 - XV - Sequential Verilog

Sequential Verilog

  Sequential circuits: Registers & combinational logic
  Use positive edge-triggered registers
  Avoid latches and negative edge-triggered registers

  Register is triggered by “posedge clk”

module register(Q, D, clock);
 input D, clock;
 output Q;
 reg Q;

 always @(posedge clock) begin
 Q <= D;
 end
endmodule

Example: a D flip-flop

Register: in this case,
holds value of Q
between clock edges
- We want this register
to be SYNTHESIZED

Autumn 2010 17 CSE370 - XV - Sequential Verilog

module and_gate(out, in1, in2);
 input in1, in2;
 output out;
 reg out;

 always @(in1 or in2) begin
 out = in1 & in2;
 end
endmodule

Holds assignment in
always block – but we
do NOT want a
SYNTHEZISED register

specifies when block is executed
i.e. triggered by changes in in1 or in2

Always example

The compiler will not synthesize
this code to a register, because out
changes whenever in1 or in2
change. Could simply write
 wire out, in1, in2;
 and (out, in1, in2);

Autumn 2010 18 CSE370 - XV - Sequential Verilog

module and_gate (out, in1, in2);
 input in1, in2;
 output out;
 reg out;

 always @(in1) begin
 out = in1 & in2;
 end
endmodule

Incomplete sensitivity list or incomplete assignment

  What if you omit an input trigger (e.g. in2)
  Compiler will insert a latch to hold the state
  Becomes a sequential circuit — NOT what you want

2 rules:
 1) Include all inputs in the trigger list
 2) Use complete assignments
 ⇒ Every path must lead to an assignment for out
 ⇒ Otherwise out needs a state element

Real state!! Holds out
because in2 isn’t specified
in always sensitivity list – a
register is synthesized that
we DO NOT want

Autumn 2010 19 CSE370 - XV - Sequential Verilog

Assignments

  Be careful with always assignments
  Which of these statements generate state?

always @(c or x) begin
 if (c) begin
 value = x;
 end
 y = value;
end

always @(c or x) begin
 value = x;
 if (c) begin
 value = 0;
 end
 y = value;
end

always @(c or x) begin
 if (c)
 value = 0;
 else if (x)
 value = 1;
end

always @(a or b)
 f = a & b & c;
end 2 rules:

 1) Include all inputs in the sensitivity list
 2) Use complete assignments
 ⇒ Every path must lead to an assignment for out
 ⇒ Otherwise out gets a state element

Autumn 2010 20 CSE370 - XV - Sequential Verilog

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

 always @(sel or A or B or C or D)
 if (sel == 2’b00) Y = A;
 else if (sel == 2’b01) Y = B;
 else if (sel == 2’b10) Y = C;
 else if (sel == 2’b11) Y = D;
endmodule

if

  Same as Java/C if statement

⇒ Single if statements synthesize to multiplexers
⇒ Nested if /else statements usually synthesize to logic

Autumn 2010 21 CSE370 - XV - Sequential Verilog

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

 always @(sel or A or B or C or D)
 if (sel[0] == 0)
 if (sel[1] == 0) Y = A;
 else Y = B;
 else
 if (sel[1] == 0) Y = C;
 else Y = D;
endmodule

if (another way)

Autumn 2010 CSE370 - XV - Sequential Verilog 22

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

 always @(sel or A or B or C or D)
 case (sel)
 2’b00: Y = A;
 2’b01: Y = B;
 2’b10: Y = C;
 2’b11: Y = D;
 endcase
endmodule

case

Autumn 2010 CSE370 - XV - Sequential Verilog 23

case executes sequentially
 ⇒ First match executes
 ⇒ Don’t need to break out of case
case statements synthesize to muxes

// Simple binary encoder (input is 1-hot) - comb. logic
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

 always @(A)
 case (A)
 8’b00000001: Y = 0;
 8’b00000010: Y = 1;
 8’b00000100: Y = 2;
 8’b00001000: Y = 3;
 8’b00010000: Y = 4;
 8’b00100000: Y = 5;
 8’b01000000: Y = 6;
 8’b10000000: Y = 7;
 default: Y = 3’bx; // Don’t care about other cases
 endcase
endmodule

default case

Autumn 2010 CSE370 - XV - Sequential Verilog 24

If you omit the default,
the compiler will create
a latch for Y – not good

// Priority encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

 always @(A)
 case (1’b1)
 A[0]: Y = 0;
 A[1]: Y = 1;
 A[2]: Y = 2;
 A[3]: Y = 3;
 A[4]: Y = 4;
 A[5]: Y = 5;
 A[6]: Y = 6;
 A[7]: Y = 7;
 default: Y = 3’bx; // Don’t care when input is all 0’s
 endcase
endmodule

case executes sequentially

Autumn 2010 CSE370 - XV - Sequential Verilog 25

Case statements execute sequentially
 ⇒ Take the first alternative that matches

// simple encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
integer i; // Temporary variables for program
reg [7:0] test;

 always @(A) begin
 test = 8b’00000001;
 Y = 3’bx;
 for (i = 0; i < 8; i = i + 1) begin
 if (A == test) Y = i;
 test = test << 1; // Shift left, pad with 0s
 end
 end
endmodule

for

Autumn 2010 CSE370 - XV - Sequential Verilog 26

for statements synthesize as
cascaded combinational logic
 ⇒ Verilog unrolls the loop

Verilog while/repeat/forever

  while (expression) statement
  execute statement while expression is true

  repeat (expression) statement
  execute statement a fixed number of times

  forever statement
  execute statement forever

Autumn 2010 CSE370 - XV - Sequential Verilog 27

wire [3:0] x, y, a, b, c, d;

assign apr = ^a;
assign y = a & ~b;
assign x = (a == b) ?
 a + c : d + a;

x

+

+

==

a

b

c

d x
+

==

a

b

c
d

Some simple synthesis examples

Autumn 2010 28 CSE370 - XV - Sequential Verilog

