
Specifying digital circuits

  Schematics (what we’ve done so far)
  Structural description
  Describe circuit as interconnected elements

  Build complex circuits using hierarchy
  Large circuits are unreadable

  Hardware description languages (HDLs)
  Structural and behavioral descriptions

  Not programming languages
  They are parallel languages tailored to digital design

  Synthesize code to produce a circuit from descriptions
  Easier to modify designs
  Details of realization take care of by compiler

Autumn 2010 1 CSE370 - IX - Hardware Description Languages

Autumn 2010 CSE370 - IX - Hardware Description Languages 2

Hardware description languages

  Describe hardware at varying levels of abstraction
  Structural description

  textual replacement for schematic
  hierarchical composition of modules from primitives

  Behavioral/functional description
  describe what module does, not how
  synthesis generates circuit for module

  Simulation semantics

Hardware description languages (HDLs)
  Abel (~1983)

  Developed by Data-I/O
  Targeted to two-level logic (most popular at the time)
  Limited capabilities

  Verilog (~1985) – IEEE standard
  Developed by Gateway (now part of Cadence)
  Syntax similar to C
  Supports both two-level and multi-level logic
  Moved to public domain in 1990

  VHDL (~1987) – IEEE standard
  DoD-sponsored
  Supports both two-level and multi-level logic
  Syntax similar to Ada

  SystemC (late 90s) – developing into IEEE standard
  Support mixed hardware/software systems
  Not as widely accepted yet

Autumn 2010 3 CSE370 - IX - Hardware Description Languages

Autumn 2010 CSE370 - IX - Hardware Description Languages 4

Verilog

  Supports structural and behavioral descriptions
  Structural

  explicit structure of the circuit
  e.g., each logic gate instantiated and connected to others

  Behavioral
  program describes input/output behavior of circuit
  many structural implementations could have same behavior
  e.g., different implementation of one Boolean function

  We’ll mostly be using behavioral Verilog in Aldec ActiveHDL
  rely on schematic when we want structural descriptions

Simulation and synthesis

  Simulation
  “Execute” a design to verify correctness

  Synthesis
  Generate a physical implementation from HDL code

Synthesis HDL
Description

Gate or
Transistor
Description

Simulation Simulation Physical
Implementation

Functional
Validation

Functional/
Timing
Validation

Real
Chip!

Autumn 2010 5 CSE370 - IX - Hardware Description Languages

Simulation and synthesis (con’t)

  Simulation
  Models what a circuit does

  Ignore implementation options
  Can include static timing
  Allows you to test design options at an abstract level

  Synthesis
  Converts your code to a netlist (circuit)

  Can simulate synthesized design
  Tools map your netlist to the hardware you’ll be using

  Simulation and synthesis in the CSE curriculum
  CSE370: Learn simulation
  CSE467: Learn synthesis

Autumn 2010 6 CSE370 - IX - Hardware Description Languages

Simulation

  You provide an environment in which to test your circuit
  Using non-circuit constructs

  Active-HDL waveforms, read files, print
  Using Verilog simulation code

  A “test fixture”

Autumn 2010 CSE370 - IX - Hardware Description Languages 7

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizable)

Autumn 2010 CSE370 - IX - Hardware Description Languages 8

module xor_gate (out, a, b);
 input a, b;
 output out;
 wire abar, bbar, t1, t2;

 inverter invA (abar, a);
 inverter invB (bbar, b);
 and_gate and1 (t1, a, bbar);
 and_gate and2 (t2, b, abar);
 or_gate or1 (out, t1, t2);

endmodule

Structural model

Autumn 2010 CSE370 - IX - Hardware Description Languages 9

module xor_gate (out, a, b);
 input a, b;
 output out;
 reg out;

 assign #6 out = a ^ b;

endmodule

Simple behavioral model

  Continuous assignment

delay from input change
to output change

simulation register - keeps
track of value of signal

NOTE: anything on the left
side of an assignment must
have a “reg” declaration

Autumn 2010 CSE370 - IX - Hardware Description Languages 10

module xor_gate (out, a, b);
 input a, b;
 output out;
 reg out;

 always @(a or b) begin
 #6 out = a ^ b;
 end

endmodule

Simple behavioral model

  always block

specifies when block is executed
ie. triggered by which signals

NOTE: this “or” is not a Boolean OR,
it just says: re-evaluate this
expression whever a or b change

Autumn 2010 CSE370 - IX - Hardware Description Languages 11

module testbench (x, y);
 output x, y;
 reg [1:0] cnt;

 initial begin
 cnt = 0;
 repeat (4) begin
 #10 cnt = cnt + 1;
 $display ("@ time=%d, x=%b, y=%b, cnt=%b",
 $time, x, y, cnt); end
 #10 $finish;
 end

 assign x = cnt[1];
 assign y = cnt[0];
endmodule

Driving a simulation through a “testbench”

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

Autumn 2010 CSE370 - IX - Hardware Description Languages 12

Complete simulation

  Instantiate stimulus component and device to test in a
schematic

a

b

z
test-bench

x
y

Specifying circuits in Verilog

  There are three major styles
  Instances ‘n wires
  Continuous assignments
  “always” blocks

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

wire E;
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

wire E;
assign E = A & B;
assign Y = ~C;
assign X = E | Y;

reg E, X, Y;
always @ (A or B or C)
begin
 E = A & B;
 Y = ~C;
 X = E | Y;
end

“Structural” “Behavioral”

Autumn 2010 13 CSE370 - IX - Hardware Description Languages

Data types

  Values on a wire
  0, 1, x (unknown or conflict), z (tri-state or unconnected)

  Vectors
  A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]

  Unsigned integer value
  Indices must be constants

  Concatenating bits/vectors (curly brackets on left or right side)
  e.g. sign-extend

  B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
  {4{A[3]}, A[3:0]} = B[7:0];

  Style: Use a[7:0] = b[7:0] + c;
 Not a = b + c;

  Bad style but legal syntax: C = &A[6:7]; // and of bits 6 and 7 of A

Autumn 2010 14 CSE370 - IX - Hardware Description Languages

Data types that do not exist

  Structures
  Pointers
  Objects
  Recursive types
  (Remember, Verilog is not C or Java or Lisp or …!)

Autumn 2010 15 CSE370 - IX - Hardware Description Languages

Numbers

  Format: <sign><size><base format><number>
  14

  Decimal number
  –4’b11

  4-bit 2’s complement binary of 0011 (is 1101)
  12’b0000_0100_0110

  12-bit binary number (_ is ignored, just used for readibility)
  3’h046

  3-digit (12-bit) hexadecimal number
  Verilog values are unsigned

  C[4:0] = A[3:0] + B[3:0];
  if A = 0110 (6) and B = 1010(–6), then C = 10000 (not 00000)
  B is zero-padded, not sign-extended

Autumn 2010 16 CSE370 - IX - Hardware Description Languages

Operators

Similar to C operators

Autumn 2010 17 CSE370 - IX - Hardware Description Languages

Two abstraction mechanisms

  Modules
  More structural
  Heavily used in 370 and “real” Verilog code

  Functions
  More behavioral
  Used often in “real” Verilog
  Just used in test fixtures in 370

Autumn 2010 18 CSE370 - IX - Hardware Description Languages

// first simple example
module smpl (X,Y,A,B,C);
 input A,B,C;
 output X,Y;
 wire E
 and g1(E,A,B);
 not g2(Y,C);
 or g3(X,E,Y);
endmodule

Basic building blocks: Modules

  Instantiated into a design
  Not called like a procedure/method

  Illegal to nest module definitions
  Modules execute in parallel
  Names are case sensitive
  // for comments
  Name can’t begin with a number
  Use wires for connections
  and, or, not are keywords
  All keywords are lower case
  Gate declarations (and, or, etc.)

  List outputs first (convention),
then inputs

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

Autumn 2010 19 CSE370 - IX - Hardware Description Languages

Modules are circuit components

  Module has ports
  External connections
  A, B, C, X, Y in this example

  Port types
  input (A, B, C)
  output (X, Y)
  inout (tri-state) – more later

  Use assign statements for
Boolean expressions
  and ⇔ &
  or ⇔ |
  not ⇔ ~

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);
 input A,B,C;
 output X,Y;
 assign X = (A&B)|~C;
 assign Y = ~C;
endmodule

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

Autumn 2010 20 CSE370 - IX - Hardware Description Languages

module xor_gate (out,a,b);
 input a,b;
 output out;
 wire abar, bbar, t1, t2;
 not inva (abar,a);
 not invb (bbar,b);
 and and1 (t1,abar,b);
 and and2 (t2,bbar,a);
 or or1 (out,t1,t2);
endmodule

Structural Verilog

8 basic gates (keywords):
 and, or, nand, nor
 buf, not, xor, xnor

bbar

t2

t1
abar

b
invb a

and2

a
inva b

and1

or1 out

5

NOT

7

AND2

4

NOT

6

AND2

8

OR2

Autumn 2010 21 CSE370 - IX - Hardware Description Languages

module full_addr (Sum,Cout,A,B,Cin);
 input A, B, Cin;
 output Sum, Cout;
 assign {Cout, Sum} = A + B + Cin;
endmodule

A
B

Cin Cout
Sum Adder

Behavioral Verilog

  Describe circuit behavior
  Not implementation

{Cout, Sum} is a concatenation of 2 1-bit signals

Autumn 2010 22 CSE370 - IX - Hardware Description Languages

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);
 input [3:0] A;
 input [3:0] B;
 output [3:0] SUM;
 output OVER;
 assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

“[3:0] A” is a 4-wire bus labeled “A”
 Bit 3 is the MSB
 Bit 0 is the LSB

Can also write “[0:3] A”
 Bit 0 is the MSB
 Bit 3 is the LSB

Buses are implicitly connected
If you write BUS[3:2], BUS[1:0]
They become part of BUS[3:0]

Autumn 2010 23 CSE370 - IX - Hardware Description Languages

assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 4'h00ff;

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator

multiple assignment (concatenation) Gate delay (used by simulator)

Boolean operators
(~ for bit-wise negation)

bits can assume four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Continuous assignment

  Assignment is continuously evaluated
  Corresponds to a logic gate
  Assignments execute in parallel

Autumn 2010 24 CSE370 - IX - Hardware Description Languages

module Compare1 (Equal, Alarger, Blarger, A, B);
 input A, B;
 output Equal, Alarger, Blarger;

 assign #5 Equal = (A & B) |
 (~A & ~B);
 assign #3 Alarger = (A & ~B);
 assign #3 Blarger = (~A & B);
endmodule

Example: A comparator

assign statement ordering doesn’t matter because they execute in parallel

Autumn 2010 25 CSE370 - IX - Hardware Description Languages

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
 input [3:0] A4, B4;
 output Equal, Alarger, Blarger;
 wire E0, E1, E2, E3, AL0, AL1, AL2, AL3, BL0, BL1, BL2, BL3;

 Compare1 cp0(E0, AL0, BL0, A4[0], B4[0]);
 Compare1 cp1(E1, AL1, BL1, A4[1], B4[1]);
 Compare1 cp2(E2, AL2, BL2, A4[2], B4[2]);
 Compare1 cp3(E3, AL3, BL3, A4[3], B4[3]);

 assign #5 Equal = (E0 & E1 & E2 & E3);
 assign #10 Alarger = (AL3 | (AL2 & e3) |
 (AL1 & E3 & E2) |
 (AL0 & E3 & E2 & E1));
 assign #3 Blarger = (~Alarger & ~Equal);
endmodule

Comparator example (con’t)

Autumn 2010 26 CSE370 - IX - Hardware Description Languages

Sequential assigns don’t make any sense

assign A = X | (Y & ~Z);

assign B = W | A;

assign A = Y & Z;

“Reusing” a variable on the LHS
in multiple assign statements
is not allowed – they execute in
parallel – indeterminate result

Autumn 2010 27 CSE370 - IX - Hardware Description Languages

Always Blocks

reg A, B, C;

always @ (W or X or Y or Z)
begin
 A = X | (Y & ~Z);
 B = W | A;
 A = Y & Z;
 if (A & B) begin
 B = Z;
 C = W | Y;
 end
end

Sensitivity list

Variables that appear
on the left hand side in
an always block must
be declared as “reg”s

Statements in an always
block are executed in
sequence

All variables must be assigned on every
possible path through the code!!!
- otherwise, the simulator gets confused
and decides it needs memory (the
dreaded “inferred latch”) so it can
remember the old value it had

Autumn 2010 28 CSE370 - IX - Hardware Description Languages

module and_gate (out, in1, in2);
 input in1, in2;
 output out;

 assign out = myfunction(in1, in2);

 function myfunction;
 input in1, in2;
 begin
 myfunction = in1 & in2;
 end

 endfunction

endmodule

Benefit:
Compiler will fail if function
does not generate a result

Functions

  Use functions for complex combinational logic

Autumn 2010 29 CSE370 - IX - Hardware Description Languages

Verilog tips

  Do not write C-code
  Think hardware, not algorithms

  Verilog is inherently parallel
  Compilers don’t map algorithms to circuits well

  Do describe hardware circuits
  First draw a dataflow diagram
  Then start coding

  References
  Tutorial and reference manual are found in ActiveHDL help
  Wikipedia – search for “Verilog” – tutorials and external resources

  Sutherland quick reference guide
  “Starter’s Guide to Verilog 2001” by Michael Ciletti – copies for

borrowing in hardware lab

Autumn 2010 30 CSE370 - IX - Hardware Description Languages

Autumn 2010 CSE370 - IX - Hardware Description Languages 31

Hardware description languages vs.
programming languages
  Program structure

  instantiation of multiple components of the same type
  specify interconnections between modules via schematic
  hierarchy of modules (only leaves can be HDL)

  Assignment
  continuous assignment (logic always computes)
  propagation delay (computation takes time)
  timing of signals is important (when does computation have its effect)

  Data structures
  size explicitly spelled out - no dynamic structures
  no pointers

  Parallelism
  hardware is naturally parallel (must support multiple threads)
  assignments can occur in parallel (not just sequentially)

Autumn 2010 CSE370 - IX - Hardware Description Languages 32

Hardware description languages and
combinational logic

  Modules - specification of inputs, outputs, bidirectional, and
internal signals

  Continuous assignment - a gate’s output is a function of its
inputs at all times (doesn’t need to wait to be "called")

  Propagation delay- concept of time and delay in input affecting
gate output

  Composition - connecting modules together with wires
  Hierarchy - modules encapsulate functional blocks

