Specitying digital circuits

Schematics (what we've done so far)
o Structural description
o Describe circuit as interconnected elements
Build complex circuits using hierarchy
Large circuits are unreadable
Hardware description languages (HDLs)
o Structural and behavioral descriptions
Not programming languages
They are parallel languages tailored to digital design
o Synthesize code to produce a circuit from descriptions
Easier to modify designs
Details of realization take care of by compiler

Autumn 2010 CSE370 - IX - Hardware Description Languages

Hardware description languages

Describe hardware at varying levels of abstraction
Structural description

o textual replacement for schematic

o hierarchical composition of modules from primitives
Behavioral/functional description

o describe what module does, not how

o synthesis generates circuit for module

Simulation semantics

Autumn 2010 CSE370 - IX - Hardware Description Languages

Hardware description languages (HDLs)

Abel (~1983)

o Developed by Data-I/O

o Targeted to two-level logic (most popular at the time)
o Limited capabilities

Verilog (~1985) — IEEE standard

o Developed by Gateway (now part of Cadence)

o Syntax similar to C

Supports both two-level and multi-level logic

o Moved to public domain in 1990

VHDL (~1987) — IEEE standard

o DoD-sponsored

o Supports both two-level and multi-level logic

o Syntax similar to Ada

SystemC (late 90s) — developing into IEEE standard
o Support mixed hardware/software systems

o Not as widely accepted yet

O

Autumn 2010 CSE370 - IX - Hardware Description Languages

Verilog

Supports structural and behavioral descriptions

Structural

o explicit structure of the circuit

o e.g., each logic gate instantiated and connected to others
Behavioral

o program describes input/output behavior of circuit

o many structural implementations could have same behavior

o e.g., different implementation of one Boolean function

We’ll mostly be using behavioral Verilog in Aldec ActiveHDL
o rely on schematic when we want structural descriptions

Autumn 2010 CSE370 - IX - Hardware Description Languages

Simulation and synthesis

Simulation

o “Execute” a design to verify correctness

Synthesis
o Generate a

physical implementation from HDL code

HDL
Description

Gate or
— Transistor
Description

|

Y
Simulation

~——

Functional
Validation

Autumn 2010

() .
Simulation [Physwal]
Implementation

unctiona
KZJJ (Rea')
]
alidatio Chipl

CSE370 - IX - Hardware Description Languages

Simulation and synthesis (con’t)

Simulation

o Models what a circuit does
Ignore implementation options

o Can include

static timing

o Allows you to test design options at an abstract level

Synthesis

o Converts your code to a netlist (circuit)
Can simulate synthesized design
o Tools map your netlist to the hardware you’ll be using
Simulation and synthesis in the CSE curriculum
o CSE370: Learn simulation
o CSEA467: Learn synthesis

Autumn 2010

CSE370 - IX - Hardware Description Languages

Simulation

You provide an environment in which to test your circuit

o Using non-circuit constructs
Active-HDL waveforms, read files, print
o Using Verilog simulation code
A “test fixture”

Simulation

Test Fixture
(Specification)

Circuit Description

(Synthesizable)

Autumn 2010

CSE370 - IX - Hardware Description Languages

Structural model

module xor gate (out, a, b);
a, b;

input
output
wire

inverter
inverter
and gate
and gate
or_gate

endmodule

Autumn 2010

out;

abar, bbar, tl, t2;

invA
invB
andl
and2
orl

(abar, a);
(bbar, b);
(tl, a, bbar);
(t2, b, abar);
(out, tl1, t2);

CSE370 - IX - Hardware Description Languages

Simple behavioral model

Continuous assignment

module xor_gate (out, a, b);

input a, b; simulation register - keeps
output out / track of value of signal

reg out;

assign #6 out = a * b;

NOTE: anything on the left
side of an assignment must
have a “reg” declaration

endmodule .
delay from input change
to output change
Autumn 2010 CSE370 - IX - Hardware Description Languages 9

Simple behavioral model

always block

module xor gate (out, a,
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a * b;
end

endmodule

Autumn 2010 CSE370 - IX - Hardware Description Languages

b) ;

specifies when block is executed
ie. triggered by which signals

NOTE: this “or” is not a Boolean OR,
it just says: re-evaluate this
expression whever a or b change

Driving a simulation through a “testbench”

module testbench (x, y);
output x y;/ 2-bit vector

reg [1:0] cnt;

_——|initial block executed

initial begin only once at start
cnt = 0; of simulation

repeat (4) begin
#10 cnt = ent + 1;
S$display ("@ time=%d, x=%b, y=%b, cnt=%b"
$time, x, y, cnt); end

#10 $finish; | print to a console
end
assign x = cnt[1]; directive to stop
assign y = cnt[0]; simulation
endmodule
Autumn 2010 CSE370 - IX - Hardware Description Languages

1"

Complete simulation

Instantiate stimulus component and device to test in a
schematic

a z
X
test-bench y D—_

b

Autumn 2010 CSE370 - IX - Hardware Description Languages

Specifying circuits in Verilog

There are three major styles
o Instances ‘n wires

o Continuous assignments

o ‘“always” blocks

“Structural” “Behavioral”
wire E; wire E; reg E, X, Y;
and gl (E,A,B); assign E = A & B; always @ (A or B or C)
not g2(Y,C); assign Y = ~C; begin
or g3(X,E,Y); assign X = E | ¥Y; E = A & B;
Y = ~C;
X=E | Y;
end
Autumn 2010 CSE370 - IX - Hardware Description Languages 13
Data types

Values on a wire
o 0, 1, x (unknown or conflict), z (tri-state or unconnected)
Vectors
o A[3:0] vector of 4 bits: A[3], A[2], A[1], A[O]
Unsigned integer value
Indices must be constants

o Concatenating bits/vectors (curly brackets on left or right side)
e.g. sign-extend
o B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
0 {4{A[3]}, A[3:0]} = B[7:0];

o Style: Use a[7:0]=b[7:0] +c;
Not a=b+c;

o Bad style but legal syntax: C = &A[6:7]; // and of bits 6 and 7 of A

Autumn 2010 CSE370 - IX - Hardware Description Languages 14

Data types that do not exist

Structures

Pointers

Objects

Recursive types

(Remember, Verilog is not C or Java or Lisp or ...!)

Autumn 2010 CSE370 - IX - Hardware Description Languages 15

Numbers

Format: <sign><size><base format><number>

14

o Decimal number

—4’b11

o 4-bit 2’s complement binary of 0011 (is 1101)

12’b0000_0100_0110

o 12-bit binary number (_is ignored, just used for readibility)

3'h046

o 3-digit (12-bit) hexadecimal number

Verilog values are unsigned

o C[4:0] = A[3:0] + B[3:0];
if A=0110 (6) and B = 1010(-6), then C = 10000 (not 00000)
B is zero-padded, not sign-extended

Autumn 2010 CSE370 - IX - Hardware Description Languages 16

Operators

> greater than Relational
>= greater than or equal to Relational
. < less than Relational
0 bit-select or part-select - Jess than or equal fo Relational
0 parenthesis logical equality Equality
! logical negation Logical logical inequality Equality
~ negation Bit-wise !)
& reduction AND Reduction case equality Equality
I reduction OR Reduction case inequality Equality
~& reduction NAND Reduction L .
-] reduction NOR Reduction & bit-wise AND Bit-wise
A reduction XOR Reduction - T
~norA~ | reduction XNOR Reduction norn | i XOR Bivwise
+ unary (sign) plus Arithmetic L I
- unary (sign) minus Arithmelic | bit-wise OR Bit-wise
0 concatenation Concatenation && logical AND Logical
o replication Replication I logical OR Logical
. mliiply Arithmetic ” condifional Conditional
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic . .
- binary minus Arithmetic Similar to C operators
<< shift left Shift
>> shift right Shift
Autumn 2010 CSE370 - IX - Hardware Description Languages 17
Modules
o More structural
. H “ ” -
o Heavily used in 370 and “real” Verilog code
Functions
o More behavioral
H “ ” H
o Used often in “real” Verilog
o Just used in test fixtures in 370
Autumn 2010 CSE370 - IX - Hardware Description Languages 18

Basic building blocks: Modules

o Instantiated into a design
Not called like a procedure/method
o lllegal to nest module definitions

o Modules execute in parallel

o Names are case sensitive
o // for comments

// first simple example
module smpl (X,Y,A,B,C);
input A,B,C;

o Name can’t begin with a number

o Use wires for connections

u and, or, not are keywords output X,Y;
wire E
o All keywords are lower case and gl(E,A,B);
o Gate declarations (and, or, etc.) not g2(Y,C);
) i) or g3(X,E,Y);

List outputs first (convention), endmodule

then inputs
Autumn 2010 CSE370 - IX - Hardware Description Languages 19

Modules are circuit components

o Module has ports

External connections

A, B, C, X, Y in this example
o Port types

input (A, B, C)

output (X, Y)

inout (tri-state) — more later

o Use assign statements for
Boolean expressions
and < &
or < |
not <« ~

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);
input A,B,C;
output X,Y;
assign X = (A&B) |~C;
assign Y = ~C;
endmodule

Autumn 2010 CSE370 - IX - Hardware Description Languages 20

Structural Verilog

module xor_gate (out,a,b);

input a,b;
output out; 8 basic gates (keywords):
wire abar, bbar, tl, t2; aﬂd7 or, nand7 nor
not inva (abar,a); £
n XOor, Xxnor
not invb (bbar,b) ; buf, not, xor, xno
and andl (tl,abar,b);
and and2 (t2,bbar,a);
or orl (out,tl,t2);
endmodule
NG o AND2_
a . >O ! j] hyl
4 inva b % and)
OR2 '
w out
. - L [Rt
NG . \AND2
b L
invb a 7 and t2
Autumn 2010 CSE370 - IX - Hardware Description Languages 21
Behavioral Verilog
Describe circuit behavior A —]
. . —— Sum
o Not implementation B ——| Adder
. — Cout
Cin—

module full addr (Sum,Cout,A,B,Cin);

input A, B, Cin;

output Sum, Cout;

assign {Cout, Sum} = A + B + Cin;
endmodule

{Cout, Sum} is a concatenation of 2 1-bit signals

Autumn 2010 CSE370 - IX - Hardware Description Languages

22

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);

input [3:0] A;

input [3:0] B;

output [3:0] SUM;

output OVER;

assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

“[3:0] A” is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit 0 is the LSB

Can also write “[0:3] A” Buses are implicitly connected
Bit 0 is the MSB If you write BUS[3:2], BUS[1:0]
Bit 3 is the LSB They become part of BUS[3:0]
Autumn 2010 CSE370 - IX - Hardware Description Languages 23

Continuous assignment

Assignment is continuously evaluated
o Corresponds to a logic gate

o Assignments execute in parallel
Boolean operators

/ (~ for bit-wise negation)
(Y & ~Z);

bits can assume four values

— (0,1,X2)

assign A = X |
assign B[3:0] = 4'b01XX;
. variables can be n-bits wide

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator

Gate delay (used by simulator) multiple assignment (concatenation)

Autumn 2010 CSE370 - IX - Hardware Description Languages 24

Example: A comparator

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) |
(~A & ~B);
assign #3 Alarger (A & ~B);
assign #3 Blarger = (~A & B);
endmodule

assign statement ordering doesn’t matter because they execute in parallel

Autumn 2010 CSE370 - IX - Hardware Description Languages 25

Comparator example (con’t)

// Make a 4-bit comparator from 4 1l-bit comparators

module Compare4 (Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire E0O, El1, E2, E3, ALO, ALl, AL2, AL3, BLO, BL1l, BL2, BL3;

Comparel cpO(EO, ALO, BLO, A4[0], B4[0]);
Comparel cpl(El, ALl, BL1l, A4[1], B4[1l]);
Comparel cp2(E2, AL2, BL2, A4[2], B4[2]);
Comparel cp3(E3, AL3, BL3, A4[3], B4[3]);

assign #5 Equal = (E0O & E1 & E2 & E3);
assign #10 Alarger (AL3 | (AL2 & e3) |
(ALl & E3 & E2) |
(ALO & E3 & E2 & El1));
assign #3 Blarger = (~Alarger & ~Equal);
endmodule

Autumn 2010 CSE370 - IX - Hardware Description Languages 26

Sequential assigns don’t make any sense

assign A =X | (Y & ~Z);
“Reusing” a variable on the LHS

assign B = W | A; in multiple assign statements
is not allowed — they execute in

assign A = Y & Z; parallel — indeterminate result
Autumn 2010 CSE370 - IX - Hardware Description Languages 27

Always Blocks

Variables that appear
on the left hand side in

an always block must
be declared as “reg’s

reg A, B, C;

/ Sensitivity list
always @ (W or X or Y or Z)

begin
A=X| (Y & ~2);
B=W/| A; Statements in an always
A=Y & Z; block are executed in
if (A & B) begin sequence
B =17Z;
C=W | Y; All variables must be assigned on every

end possible path through the code!!!
end - otherwise, the simulator gets confused
and decides it needs memory (the

dreaded “inferred latch”) so it can
remember the old value it had

Autumn 2010 CSE370 - IX - Hardware Description Languages 28

Functions

Use functions for complex combinational logic

module and gate (out, inl, in2);
input inl, in2;
output out;

assign out = myfunction(inl, in2);

function myfunction;
input inl, in2;

begin Benefit:
myfunction = inl & in2; Compiler will fail if function
end does not generate a result
endfunction
endmodule
Autumn 2010 CSE370 - IX - Hardware Description Languages 29
Verilog tips

Do not write C-code
o Think hardware, not algorithms
Verilog is inherently parallel
Compilers don’t map algorithms to circuits well
Do describe hardware circuits
o First draw a dataflow diagram
o Then start coding
References
o Tutorial and reference manual are found in ActiveHDL help

o Wikipedia — search for “Verilog” — tutorials and external resources
Sutherland quick reference guide

o “Starter's Guide to Verilog 2001” by Michael Ciletti — copies for
borrowing in hardware lab

Autumn 2010 CSE370 - IX - Hardware Description Languages 30

Hardware description languages vs.
programming languages

Program structure

o instantiation of multiple components of the same type

o specify interconnections between modules via schematic

o hierarchy of modules (only leaves can be HDL)
Assignment

o continuous assignment (logic always computes)

o propagation delay (computation takes time)

o timing of signals is important (when does computation have its effect)
Data structures

o size explicitly spelled out - no dynamic structures

o no pointers

Parallelism

o hardware is naturally parallel (must support multiple threads)
o assignments can occur in parallel (not just sequentially)

Autumn 2010 CSE370 - IX - Hardware Description Languages 31

Hardware description languages and
combinational logic

Modules - specification of inputs, outputs, bidirectional, and
internal signals

Continuous assignment - a gate’s output is a function of its
inputs at all times (doesn’t need to wait to be "called")

Propagation delay- concept of time and delay in input affecting
gate output

Composition - connecting modules together with wires
Hierarchy - modules encapsulate functional blocks

Autumn 2010 CSE370 - IX - Hardware Description Languages 32

