Working with Combinational Logic

- **Simplification**
 - two-level simplification
 - exploiting don’t cares
 - algorithm for simplification

- **Logic realization**
 - two-level logic and canonical forms realized with NANDs and NORs
 - multi-level logic, converting between ANDs and ORs

Design example: 2x2-bit multiplier

4-variable K-map for each of the 4 output functions
Design example: 2x2-bit multiplier (activity)

Definition of terms for two-level simplification

- **Implicant**
 - single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube

- **Prime implicant**
 - implicant that can't be combined with another to form a larger subcube

- **Essential prime implicant**
 - prime implicant is essential if it alone covers an element of ON-set
 - will participate in ALL possible covers of the ON-set
 - DC-set used to form prime implicants but not to make implicant essential

- **Objective:**
 - grow implicant into prime implicants
 (minimize literals per term)
 - cover the ON-set with as few prime implicants as possible
 (minimize number of product terms)
Examples to illustrate terms

5 prime implicants:
BD, ABC', ACD, A'C'D
minimum cover: AC + BC' + A'B'D

Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
 - Step 1: choose an element of the ON-set
 - Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - consider top/bottom row, left/right column, and corner adjacencies
 - this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
 - Step 3: revisit the 1s in the K-map
 - if covered by single prime implicant, it is essential, and participates in final cover
 - 1s covered by essential prime implicant do not need to be revisited
 - Step 4: if there remain 1s not covered by essential prime implicants
 - select the smallest number of prime implicants that cover the remaining 1s
Algorithm for two-level simplification (example)

Activity

- List all prime implicants for the following K-map:

```
C D  A
X X 0 0 1
0 1 1 1
0 X X 0
0 1 0 1
```

- Which are essential prime implicants?

- What is the minimum cover?

Winter 2010
CSE370 - VI - Logic Minimization
Implementations of two-level logic

- **Sum-of-products**
 - AND gates to form product terms (minterms)
 - OR gate to form sum

- **Product-of-sums**
 - OR gates to form sum terms (maxterms)
 - AND gates to form product

Two-level logic using NAND gates (cont’d)

- OR gate with inverted inputs is a NAND gate
 - de Morgan’s: \(A' + B' = (A \cdot B)’ \)
- Two-level NAND-NAND network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed
Two-level logic using NOR gates (cont’d)

- **AND gate with inverted inputs is a NOR gate**
 - de Morgan’s: \(A' \cdot B' = (A + B)' \)
- **Two-level NOR-NOR network**
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed

```
A B C D E F G
```

Multi-level logic

- \(x = A \overline{D} F + A E F + B D F + B E F + C D F + C E F + G \)
 - reduced sum-of-products form – already simplified
 - 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
 - 25 wires (19 literals plus 6 internal wires)
- \(x = (A + B + C) (D + E) F + G \)
 - factored form – not written as two-level S-o-P
 - 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 - 10 wires (7 literals plus 3 internal wires)
Conversion of multi-level logic to NAND gates

- \(F = A \overline{B + C \overline{D}} + B C' \)

Conversion of multi-level logic to NORs

- \(F = A (B + C \overline{D}) + B C' \)
Summary for multi-level logic

- **Advantages**
 - circuits may be smaller
 - gates have smaller fan-in
 - circuits may be faster

- **Disadvantages**
 - more difficult to design
 - tools for optimization are not as good as for two-level
 - analysis is more complex