Combinational logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by perfect induction

Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to “1”):

 close switch (if A is “1” or asserted) and turn on light bulb (Z)

 open switch (if A is “0” or unasserted) and turn off light bulb (Z)

 \[Z = A \]
Switches (cont’d)

- Compose switches into more complex ones (Boolean functions):

 \[
 Z = A \text{ and } B \\
 \]

 \[
 Z = A \text{ or } B \\
 \]

Switching networks

- Switch settings
 - determine whether or not a conducting path exists to light the light bulb

- To build larger computations
 - use the light bulb (output of the network) to set other switches (inputs to another network)
Transistor networks

- Modern digital systems are designed in CMOS technology
 - MOS stands for Metal-Oxide on Semiconductor
 - C is for complementary because there are both normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches
 - similar, though easier to work with than relays.

MOS transistors

- MOS transistors have three terminals: drain, gate, and source
 - they act as switches in the following way:
 - if the voltage on the gate terminal is (some amount) higher/lower than the source terminal then a conducting path will be established between the drain and source terminals

 \[
 \begin{align*}
 \text{n-channel} & : & \text{open when voltage at G is low} & \text{closed when:} & \text{voltage(G)} > \text{voltage (S)} + \varepsilon \\
 \text{p-channel} & : & \text{closed when voltage at G is low} & \text{opens when:} & \text{voltage(G)} < \text{voltage (S)} - \varepsilon
 \end{align*}
 \]
Most digital logic is CMOS

- CMOS logic gates are inverting
 - Easy to implement NAND, NOR, NOT while AND, OR, and Buffer are harder
Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - in general, there are 2^{2n} functions of n inputs

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>16 possible functions (F_0-F_{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000000011111111</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0000111100001111</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0011001100110011</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0101010101010101</td>
</tr>
</tbody>
</table>

X and Y \[\equiv \ \text{not} (X \text{ nand } Y) \]

X \text{ or } Y \[\equiv \ \text{not} (X \text{ nor } Y) \]

X \text{ not } \equiv \ \text{not} (X \text{ or } Y)

In fact, we can do it with only NOR or only NAND
- NOT is just a NAND or a NOR with both inputs tied together

\[
\begin{array}{c|c|c}
X & Y & X \text{ nor } Y \\
\hline
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\quad \begin{array}{c|c|c}
X & Y & X \text{ nand } Y \\
\hline
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

- and NAND and NOR are "duals", that is, it's easy to implement one using the other

\[
\begin{align*}
X \text{ nand } Y &= \text{not} (\text{not} X \text{ nor } \text{not} Y) \\
X \text{ nor } Y &= \text{not} (\text{not} X \text{ nand } \text{not} Y)
\end{align*}
\]
Boolean algebra

- An algebraic structure consists of
 - a set of elements B
 - binary operations $\{+, \cdot\}$
 - and a unary operation $\{\prime\}$
 - such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: $a + b \in B$, $a \cdot b \in B$
3. commutativity: $a + b = b + a$, $a \cdot b = b \cdot a$
4. associativity: $a + (b + c) = (a + b) + c$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
5. identity: $a + 0 = a$, $a \cdot 1 = a$
6. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
7. complementarity: $a + a' = 1$, $a \cdot a' = 0$

George Boole – 1854

Logic functions and Boolean algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: \prime, $+$, and \cdot

X, Y are Boolean algebra variables

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X \cdot Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X' + Y'$</th>
<th>$X' \cdot Y'$</th>
<th>$(X \cdot Y') + (X' \cdot Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$X = Y$

Boolean expression that is true when the variables X and Y have the same value and false, otherwise.
Axioms and theorems of Boolean algebra

- **identity**
 1. \(X + 0 = X \)
 1D. \(X \cdot 1 = X \)

- **null**
 2. \(X + 1 = 1 \)
 2D. \(X \cdot 0 = 0 \)

- **idempotency**
 3. \(X + X = X \)
 3D. \(X \cdot X = X \)

- **involution**
 4. \((X')' = X \)

- **complementarity**
 5. \(X + X' = 1 \)
 5D. \(X \cdot X' = 0 \)

- **commutativity**
 6. \(X + Y = Y + X \)
 6D. \(X \cdot Y = Y \cdot X \)

- **associativity**
 7. \((X + Y) + Z = X + (Y + Z) \)
 7D. \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) \)

- **distributivity**
 8. \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z) \)
 8D. \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z) \)

- **uniting**
 9. \(X \cdot Y + X \cdot Y' = X \)
 9D. \((X + Y) \cdot (X + Y') = X \)

- **absorption**
 10. \(X + X \cdot Y = X \)
 10D. \(X \cdot (X + Y) = X \)
 11. \((X + Y') \cdot Y = X \cdot Y \)
 11D. \((X \cdot Y') + Y = X + Y \)

- **factoring**
 12. \((X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y \)
 12D. \(X \cdot Y + X' \cdot Z = (X + Z) \cdot (X' + Y) \)

- **concensus**
 13. \((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z \)
 13D. \((X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z) \)

- **de Morgan’s**
 14. \((X + Y + \ldots)' = X' \cdot Y' \cdot \ldots \)
 14D. \((X \cdot Y \cdot \ldots)' = X' + Y' + \ldots \)

- **generalized de Morgan’s**
 15. \(f'(X_1, X_2, \ldots, X_n, 0, 1, +, \cdot) = f(X_1', X_2', \ldots, X_n', 1, 0, \cdot, +) \)
Axioms and theorems of Boolean algebra (cont’d)

- **Duality**
 - a dual of a Boolean expression is derived by replacing
 \(\cdot \) by \(+\), \(+ \) by \(\cdot \), \(0 \) by \(1 \), and \(1 \) by \(0 \), and leaving variables unchanged
 - any theorem that can be proven is thus also proven for its dual!
 - a meta-theorem (a theorem about theorems)

- **duality:**
 16. \(X + Y + \ldots \leftrightarrow X \cdot Y \cdot \ldots \)

- **generalized duality:**
 17. \(f(X_1,X_2,\ldots,X_n,0,1,+,\cdot) \leftrightarrow f(X_1,X_2,\ldots,X_n,1,0,\cdot,+) \)

- **Different than deMorgan’s Law**
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

- **Using the laws of Boolean algebra:**
 - e.g., prove the theorem: \(X \cdot Y + X \cdot Y' = X \)
 - distributivity (8)
 - complementarity (5)
 - identity (1D)
 - \(X \cdot Y + X \cdot Y' = X \cdot (Y + Y') \)
 - \(X \cdot (Y + Y') = X \cdot (1) \)
 - \(X \cdot (1) = X \)

 - e.g., prove the theorem: \(X + X \cdot Y = X \)
 - identity (1D)
 - distributivity (8)
 - identity (2)
 - identity (1D)
 - \(X + X \cdot Y = X \cdot 1 + X \cdot Y \)
 - \(X \cdot 1 + X \cdot Y = X \cdot (1 + Y) \)
 - \(X \cdot (1 + Y) = X \cdot (1) \)
 - \(X \cdot (1) = X \)
Activity

- Prove consensus theorem using the laws of Boolean algebra:
 - \((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z\)

<table>
<thead>
<tr>
<th>Identity</th>
<th>Complementarity</th>
<th>Distributivity</th>
<th>Commutativity</th>
<th>Factoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z))</td>
<td>((X \cdot Y) + (X' + X) \cdot (Y \cdot Z) + (X' \cdot Z))</td>
<td>((X \cdot Y) + (X' \cdot Y \cdot Z) + (X \cdot Y \cdot Z) + (X' \cdot Z))</td>
<td>((X \cdot Y) + (X \cdot Y \cdot Z) + (X' \cdot Y \cdot Z) + (X' \cdot Z))</td>
<td>((X \cdot Y) \cdot (1 + Z) + (X' \cdot Z) \cdot (1 + Y))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Null</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X \cdot Y) \cdot (1) + (X' \cdot Z) \cdot (1))</td>
<td>((X \cdot Y) + (X' \cdot Z))</td>
</tr>
</tbody>
</table>

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:
 - \((X + Y)' = X' \cdot Y'\)
 - NOR is equivalent to AND with inputs complemented
 - \((X \cdot Y)' = X' + Y'\)
 - NAND is equivalent to OR with inputs complemented
A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cout = $A' B' Cin + A' B Cin' + A B' Cin' + A B Cin$

$S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin$

W'10 CSE370 - I - Boolean Algebra