
Winter 2010 CSE370 - I - Introduction 1

CSE370: Introduction to Digital Design

  Course staff
  Gaetano Borriello
  TAs: Craig Prince (grad), Steven Lockhart (ugrad)
  Student lab assistants in 003

  Course web
  www.cs.washington.edu/370/
  Make sure to subscribe to class mailing list

  Course text
  Contemporary Logic Design, 2e, Katz/Borriello, Prentice-Hall

  Today’s agenda
  Class administration and overview of course web
  Course objectives and approach
  A brief introduction to the course

Winter 2010 CSE370 - I - Introduction 2

Why are you here?

  Obvious reasons
  this course is part of the CS/CompE requirements
  it is the implementation basis for all modern computing devices

  building large things from small components
  computers = transistors + wires - it’s all in how they are interconnected

  provide a model of how a computer works

  More important reasons
  the inherent parallelism in hardware is your first exposure to

parallel computation
  it offers an interesting counterpoint to programming and is

therefore useful in furthering our understanding of computation

Winter 2010 CSE370 - I - Introduction 3

What will we learn in CSE370?

  The language of logic design
  Boolean algebra, logic minimization, state, timing, CAD tools

  The concept of state in digital systems
  analogous to variables and program counters in software systems

  How to specify/simulate/compile/realize our designs
  hardware description languages
  tools to simulate the workings of our designs
  logic compilers to synthesize the hardware blocks of our designs
  mapping onto programmable hardware

  Contrast with programming
  sequential and parallel implementations
  specify algorithm as well as computing/storage resources it will use

Winter 2010 CSE370 - I - Introduction 4

What is logic design?

  What is design?
  given a specification of a problem, come up with a way of solving

it choosing appropriately from a collection of available
components

  while meeting some criteria for size, cost, power, beauty,
elegance, etc.

  What is logic design?
  determining the collection of digital logic components to perform

a specified control and/or data manipulation and/or
communication function and the interconnections between them

  which logic components to choose? – there are many
implementation technologies (e.g., off-the-shelf fixed-function
components, programmable devices, transistors on a chip, etc.)

  the design may need to be optimized and/or transformed to meet
design constraints

Winter 2010 CSE370 - I - Introduction 5

Applications of logic design

  Conventional computer design
  CPUs, busses, peripherals

  Networking and communications
  phones, modems, routers

  Embedded products
  in cars, toys, appliances, entertainment devices

  Scientific equipment
  testing, sensing, reporting

Winter 2010 CSE370 - I - Introduction 6

What is digital hardware?

  Collection of devices that sense and/or control wires that carry a
digital value (i.e., a physical quantity that can be interpreted
as a logical “0” or “1”)
  example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”
  example: pair of transmission wires where a “0” or “1” is distinguished

by which wire has a higher voltage (differential)
  example: orientation of magnetization signifies a “0” or a “1”

  Primitive digital hardware devices
  logic computation devices (sense “inputs” and drive “outputs”)

  are two wires both “1” - make another be “1” (AND)
  is at least one of two wires “1” - make another be “1” (OR)
  is a wire “1” - then make another be “0” (NOT)

  memory devices (store)
  store a value
  recall a previously stored value

Winter 2010 CSE370 - I - Introduction 7

What is happening now in digital design?
  Important trends in how industry does hardware design

  larger and larger designs
  shorter and shorter time to market
  cheaper and cheaper products
  design time often dominates cost

  Scale
  pervasive use of computer-aided design tools over hand methods
  multiple levels of design representation

  Time
  emphasis on abstract design representations
  programmable rather than fixed function components
  automatic synthesis techniques
  importance of sound design methodologies

  Cost
  higher levels of integration
  use of simulation to debug designs
  simulate and verify before you build

Winter 2010 CSE370 - I - Introduction 8

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation

CSE 370: concepts/skills/abilities

  Understanding the basics of logic design (concepts)
  Understanding sound design methodologies (concepts)
  Modern specification methods (concepts)
  Familiarity with a full set of CAD tools (skills)
  Realize digital designs in an implementation technology (skills)
  Appreciation for the differences and similarities (abilities)

in hardware and software design

Winter 2010 CSE370 - I - Introduction 9

scope of CSE 370

Representation of digital designs

  Physical devices (transistors)
  Switches
  Truth tables
  Boolean algebra
  Gates
  Waveforms
  Finite-state behavior
  Register-transfer behavior
  Processor architecture
  Concurrent abstract specifications

Winter 2010 CSE370 - I - Introduction 10

Computation: abstract vs. implementation

  Up to now, computation has been a mental exercise (paper,
programs)

  This class is about physically implementing computation using
physical devices that use voltages to represent logical values

  Basic units of computation are:
  representation: "0", “1" on a wire

 set of wires (e.g., for binary ints)
  assignment: x = y
  data operations: x + y – 5
  control:

 sequential statements: A; B; C;
 conditionals: if x == 1 then y;
 loops: for (i = 1 ; i == 10, i++) {…}
 procedures: A; proc(...); B;

  We will study how each of these are implemented in hardware
and composed into computational structures

Winter 2010 CSE370 - I - Introduction 11

Class components

  Combinational logic
  outputt = F(inputt)

  Sequential logic
  outputt = F(outputt-1, inputt)

  output dependent on history
  concept of a time step (clock)

  Basic computer architecture
  how a CPU executes instructions

  Tools to make our job easier/efficient
  designs that work the first time
  designs that are efficient and easy to change/maintain

Winter 2010 CSE370 - I - Introduction 12

easy to implement
with CMOS transistors

Combinational logic

  Common combinational logic elements are called logic gates

  Buffer, NOT

  AND, NAND

  OR, NOR

Winter 2010 CSE370 - I - Introduction 13

Sequential logic

  Common sequential logic elements are called flip-flops
  Flip-flops only change their output after a clocking event

Winter 2010 CSE370 - I - Introduction 14

Mixing combinational and sequential logic

  What does this very simple circuit do?

Winter 2010 CSE370 - I - Introduction 15

Combinational or sequential?

  assignment: x = y;
  data operations: x + y – 5
  sequential statements: A; B; C;
  conditionals: if x == 1 then y;
  loops: for (i = 1 ; i == 10, i++) {…}
  procedures/methods: A; proc(...); B;

Winter 2010 CSE370 - I - Introduction 16

A quick combinational logic example

  Calendar subsystem: number of days in a month (to control
watch display)
  used in controlling the display of a wrist-watch LCD screen

  inputs: month, leap year flag
  outputs: number of days

Autumn 2000 CSE370 - I - Introduction 17

Implementation in software

integer number_of_days (month, leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1) then return (29)

else return (28);
case 3: return (31);
...
case 12: return (31);
default: return (0);

}
}

Winter 2010 CSE370 - I - Introduction 18

leap month

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
1110 – – – – –
1111 – – – – –

Implementation as a
combinational digital system

  Encoding:
  how many bits for each input/output?
  binary number for month
  four wires for 28, 29, 30, and 31

  Behavior:
  combinational
  truth table

specification

Winter 2010 CSE370 - I - Introduction 19

symbol
for and

symbol
for or

symbol
for not

Combinational example (cont’d)

  Truth-table to logic to switches to gates
  d28 = “1 when month=0010 and leap=0”
  d28 = m8'•m4'•m2•m1'•leap'

  d31 = “1 when month=0001 or month=0011 or ... month=1100”
  d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ...

(m8•m4•m2'•m1')
  d31 = can we simplify more? month leap d28 d29 d30 d31

0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Winter 2010 CSE370 - I - Introduction 20

Combinational example (cont’d)

  d28 = m8'•m4'•m2•m1'•leap’
  d29 = m8'•m4'•m2•m1'•leap
  d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +

 (m8•m4'•m2'•m1) + (m8•m4'•m2•m1)
 = (m8'•m4•m1') + (m8•m4'•m1)

  d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +
 (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
 (m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +
 (m8•m4•m2'•m1')

Winter 2010 CSE370 - I - Introduction 21

system

data-path control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

transistors

Design hierarchy

combinational
logic

