
 1

CSE370 Winter 2010 – Exam 2 (24 February 2010)

Please read through the entire examination first! This exam was designed to be
completed in 50 minutes and, hopefully, this estimate will be reasonable.

There are 3 problems for a total of 110 points. The point value of each problem is
indicated in the table below. Each problem and sub-problem is on a separate sheet of
paper. Write your answer neatly in the space provided. If you need more space (you
shouldn't), you can write on the back of the sheet where the question is posed, but please
make sure that you indicate clearly the problem to which the comments apply. Do NOT
use any other paper to hand in your answers. If you have difficulty with part of a
problem, move on to the next one. They are mostly independent of each other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Name:

ID#:

Problem Max Score Score
1 45 45
2 20 20
3 45 45

TOTAL 110 110

 2

1. Adders (45 points)

(a – 15 pts) The planet Polydactylus-12 uses a base-12 number system. They are just
making their way into the digital age and are in need of a basic BCP (binary-coded
polydactyl) adder. A BCP adder adds to BCP digits (between 0 and 11) and asserts a
carry out if the sum is greater than 11 as well as the sum BCP digit (also between 0 and
11).

To start, write a Verilog description of the BCP module. Below is a module definition
for you to fill in. Assume that your inputs A and B will already be legal BCP digits (i.e.,
0 to 11). Note: you should not require more than a few lines of Verilog, if you find
yourself writing more than that, STOP, and re-consider your approach.

module BCP_adder (Cout, S, A, B, Cin)

output Cout;
output S[3:0];
input A[3:0], B[3:0];
input Cin;

reg C[4:0];

always @(A, B, Cin) begin
 C = A + B + Cin;
 if (C >= 12) C = C + 4;
end

assign Cout = C[4];
assign S[3:0] = C[3:0];

endmodule

 3

(b – 20 pts) The next step is to develop an implementation of the BCP adder quickly.
You are in luck since Earth has a surplus of 4-bit binary adders. Construct a BCP single-
digit adder using no more than two 4-bit binary adders (two have been drawn below so
that you can use them, if your solution requires them) and as few additional gates as
possible (none shown below). Don’t forget to consider Cin and Cout of your module so
that BCP adders can be combined easily for multiple digits.

 4

(c – 10 pts) If the delay of 4-bit adder of part (b) is 4 time units for the S bits and 3 time
units for Cout, what is the delay of your implementation of the BCP adder (assume that all
gates have a delay of 1). Make sure to explain how you derived your final delay for both
Cout and the S outputs. Please highlight your result.

Delay to S of the first adder is 4, then through 2 more gate delays to reach the inputs of
the second adder, and another delay of 4 to S of the second adder means the sum will be
available at time ****10****.

The carry-out of the second adder will be computed by time 9 (4 + 2 + 3) and the
additional OR gate to combine with the carry-out of the first adder will make it available
at time ****10**** as well.

 5

2. Programmable Logic (20 points)

Given the following K-maps for two logic functions, X and Y, respectively, show how
you would program the PAL on the next page (6 inputs, 3 outputs, 9 product terms
overall) to implement them. Clearly label all you inputs, outputs, and product terms on
the PAL.

Naively, each equation for X and Y has four terms. These will not fit in the PAL available
to us as it is restricted to 3 product terms per function with no sharing.

We take advantage of the two common implicants across the two functions for X and Y
that can be implemented by a common sub-function, called Z. This leads to the following
equations:

Z = ABC’D’ + A’BCD’
X = AB’C’D + A’B’CD + Z
Y = AB’C’ + A’B’C + Z

These three equations meet the constraints of our PAL.

 6

 7

3. Registers/Counters (45 points)

(a – 15pts) Given the following circuit, derive the state diagram by filling in the arcs
below (the state codes in the circles correspond to that states of the FFs in the same
order). Is this a counter? If so, why? Is it a self-starting counter? If it isn’t a counter,
why not?

This is NOT a counter as it does not have a repeating sequence of states. Therefore, it is
also not self-starting.

 8

(b – 5 pts) Given the Verilog description below, synthesize the corresponding circuit.

module problem_3_b (clk, A, B, C)

output A, B, C;
input clk;

reg A, B, C;

always @(posedge clk) B <= A;

always @(posedge clk) C <= B;

always @(posedge clk) A <= A ^ (B ^ C);

endmodule

The FFs are in the order A, B, C from left to right.

 9

(c – 10 pts) Determine the state diagram for the circuit you synthesized in part (b) by
filling in the arcs below (the state codes in the circles correspond to the FFs A, B, C). Is
this a counter? If so, why? Is it a self-starting counter? If it isn’t a counter, why not?

This is a counter as its state diagram contains the repeating sequence (4 elements):
001, 100, 110, 011, 001, …

as well as a second repeating sequence (only 2 elements):
010, 101, 010, …

It is not self-starting because if it starts in states 000 or 111 it will never leave those
states.

 10

(d – 15 pts) The circuit below describes a counter that is NOT self-starting, use no more
than a single 2-input OR gate to make the counter self-starting when a “RESET” input is
asserted. Note that RESET is just another input, the FFs are not resettable or settable.
The state diagram skeleton below is provided simply for your convenience, the state
codes in the circles correspond to that states of the FFs in the same order.

This circuit is a simple 3-input linear-feedback shift register (LFSR) as seen in lab.

A 2-input OR-gate can be added to the input left-most D-FF.
The 2 inputs to the OR-gate are the output of the XOR gate and the signal RESET.
If the counter were trapped in state 000, this would guarantee that RESET could make
the next state be 100, pushing the counter into its repeating sequence of 100, 110, 111,
011, 101, 010, 001, 100, …

Similarly, the OR-gate could have been added to the second or third FF inputs, thereby
pushing the counter into states 010 or 001, respectively. These are also in the counting
sequence.

Also, there is no danger of pushing the counter back into state 000 using RESET as it will
always assert one of the state bits (no matter which FF has the OR-gate at its input)
thereby keeping the counter in the counting sequence.

