
CSE 370

x370 Processor Definition
The x370 processor is a simple 16-bit architecture based on the ALU and register file that is designed in
class. The x370 is a Load/Store architecture and has 8 registers and separate instruction and data
memories. The instruction memory has up to 256 16-bit instructions and data memory has up to 256 16-bit
data values. Simpler versions of the x370 can be constructed using fewer registers, smaller memories and
fewer instructions. All x370 instructions can be executed in a single cycle.

Instruction Set

ALU Instructions

Name Op code Operation Comments

ADD 10000 RD ← RA + RB

XOR 10001 RD ← RA ⊕ RB

INC 10010 RD ← RA + 1

PASSA 10011 RD ← RA

Reserved 10100 Available for new ALU operation

XNOR 10101 RD ← ¬(RA ⊕ RB)

SUB 10110 RD ← RB – RA Note order of operands

LDI 10111 RD ← Data (sign
extended to 16 bits)

Non-ALU instruction:
Load immediate data from instruction

CSE 370 – Spring 2005

 2 5/19/2010

Branch Instructions

Branch instructions allow the program to execute loops and execute different instructions depending on the
result of an ALU operation. The conditional branch instructions test the value in register RB. Branches are
typically executed right after the ALU instruction that generates the value to be tested.

Name Op code Operation Comments

BR 00000 PC ← Address Unconditional branch

BRZ 00001 if (RB == 0) PC ← Address;
else PC ← PC + 1

Branch if Zero

BRN 00010 if (RB < 0) PC ← Address;
else PC ← PC + 1

Branch if Negative

Load/Store Instructions

Data memory is accessed via the load and store instructions, which transfer a single value between a
register and a location in data memory, whose address is given in register RB. Only the low-order 8 bits of
RB is used for the address since the data memory has at most 256 locations.

Name Op code Operation Comments

LDR 11111 RD ← DMEM[RB]

STR 01111 DMEM[RB] ← RA

Implementing the x370 Processor
We will implement the x370 in several steps instead of trying to do it all at once. This way, you can make
sure it works as you go along.

x370 Model 0 – ALU Instructions

The base processor is very simple – it executes ALU instructions only, starting after reset with the
instruction at address 0, and then executing instructions at 1, 2, etc. We will give you this base processor.
Your job is to add instructions and features to implement the full processor.

x370 Model 2 – Load Immediate Instruction and Branch Instructions

Implement the load immediate (LDI) instruction, which allows the program to load a constant that is part of
the instruction into the processor. This 8-bit constant is sign extended to allow negative constants.

This also adds the branch instructions, which allows a program to execute loops and to branch based on the
value of a register. There are three branch instructions: BR, unconditional branch, BZ, branch if the
register RB is 0, and BN, branch if the register RB negative. The branch instructions specify the address of
the next instruction to execute if the branch condition holds.

x370 Model 3 – Data Memory and Load/Store Instructions

So far, all the data used by the program is kept in the registers in the register file. To solve interesting
problems, we need to have memory which contains input data and output data, as well as temporary data as

CSE 370 – Spring 2005

 3 5/19/2010

needed. The Model 3 has a separate data memory with 256 locations. This memory is accessed via the
LDR (Load Register) and STR (Store Register) instructions. In both cases, the address of the location in
data memory is given by register RB. The LDR instruction loads this memory location into RD, and the
STR instruction stores RA to this memory location.

The data memory is implemented using the dram.v module. This module has a parameter that gives the
name of the file that is used to initialize the memory contents. You can change the file name by right-
clicking on the dram module and changing this parameter.

