Minimization of Boolean logic

- Minimization
 - uniting theorem
 - grouping of terms in Boolean functions
- Alternate representations of Boolean functions
 - cubes
 - Karnaugh maps

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed – "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)
The uniting theorem

- Key tool to simplification: $A (B' + B) = A$
- Essence of simplification of two-level logic
 - find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

\[F = A'B' + AB' = (A' + A)B' = B' \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- B has the same value in both on-set rows
 - B remains, actually B' because B is 0 in both cases
- A has a different value in the two rows
 - A is eliminated

Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"
Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Two faces of size 0 (nodes) combine into a face of size 1 (line)

A varies within face, B does not
This face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

Three variable example

- Binary full-adder carry-out logic

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin + AB + ACin
Higher dimensional cubes

- Sub-cubes of higher dimension than 2

\[F(A, B, C) = \Sigma m(4, 5, 6, 7) \]

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the literal A

m-dimensional cubes in a n-dimensional Boolean space

- In a 3-cube (three variables):
 - a 0-cube, i.e., a single node, yields a term in 3 literals
 - a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

- In general,
 - an m-subcube within an n-cube (m < n) yields a term with n – m literals
Karnaugh maps

- Flat map of Boolean cube
 - wrap-around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

Karnaugh maps (cont’d)

- Numbering scheme based on Gray–code
 - e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells
Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh map examples

- \(F = \)
- \(\text{Cout} = \)
- \(f(A,B,C) = \Sigma m(0,4,5,7) \)
More Karnaugh map examples

\[F(A,B,C) = \Sigma m(0,4,5,7) \]

\[F'(A,B,C) = \Sigma m(1,2,3,6) \]

\[F' \] simply replace 1's with 0's and vice versa

\[G(A,B,C) = \]

Karnaugh map: 4-variable example

\[F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15) \]

\[F = C + A' B D + B' D' \]

find the smallest number of the largest possible subcubes to cover the ON-set
(fewer terms with fewer inputs per term)
Karnaugh maps: don’t cares

- \(f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13) \)
 - without don't cares
 - \(f = A'D + B'C'D \)

Karnaugh maps: don’t cares (cont’d)

- \(f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13) \)
 - \(f = A'D + B'C'D \) without don't cares
 - \(f = A'D + C'D \) with don't cares

by using don't care as a "1"

- a 2-cube can be formed rather than a 1-cube to cover this node

\(\text{don't cares} \) can be treated as 1s or 0s depending on which is more advantageous
Activity

- Minimize the function \(F = \Sigma \text{m}(0, 2, 7, 14, 15) + d(3, 6, 9, 12, 13) \)

Does \(BC + A'B'D' + B'C'D' = A'C + AB + B'C'D' \)?

- NO! Not in general, only if we ignore the cells with don’t cares

\[
\begin{align*}
F_1 &= BC + A'B'D' + B'C'D' \\
F_2 &= A'C + AB + B'C'D' \\
F_1 \neq F_2
\end{align*}
\]

\[
\begin{align*}
F_1 + d(3,6,9,12,13) &= F_2 + d(3,6,9,12,13) \\
&\text{(don’t cares all 1)} \\
F_1 \cdot D(3,6,9,12,13) &= F_2 \cdot D(3,6,9,12,13) \\
&\text{(don’t cares all 0)}
\end{align*}
\]
Combinational logic summary (so far)

- Logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification