
Spring 2010 CSE370 - III - Realizing Boolean Logic 1

Realizing Boolean logic

  Algebraic expressions to gates
  Mapping between different gates
  Discrete logic gate components (used in lab 1)

Spring 2010 CSE370 - III - Realizing Boolean Logic 2

A simple example: 1-bit binary adder

  Inputs: A, B, Carry-in
  Outputs: Sum, Carry-out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

Cin Cout

Spring 2010 CSE370 - III - Realizing Boolean Logic 3

Apply the theorems to simplify expressions

  The theorems of Boolean algebra can simplify expressions
  e.g., full adder’s carry-out function

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
 = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
 = A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
 = (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
 = (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
 = B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
 = B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
 = B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin
 = B Cin + A (1) Cin + A B Cin’ + A B Cin
 = B Cin + A Cin + A B (Cin’ + Cin)
 = B Cin + A Cin + A B (1)
 = B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

Spring 2010 CSE370 - III - Realizing Boolean Logic 4

A simple example: 1-bit binary adder

  Inputs: A, B, Carry-in
  Outputs: Sum, Carry-out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin + A Cin + A B

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin
 = A’ (B’ Cin + B Cin’) + A (B’ Cin’ + B Cin)
 = A’ Z + A Z’
 = A xor Z = A xor (B xor Cin)

A A A A A
B B B B B

S S S S S

Cin Cout

Spring 2010 CSE370 - III - Realizing Boolean Logic 5

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

  NOT X’ X ~X X/

  AND X • Y XY X ∧ Y

  OR X + Y X ∨ Y

Spring 2010 CSE370 - III - Realizing Boolean Logic 6

X
Y

Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

  NAND

  NOR

  XOR
 X ⊕ Y

  XNOR
 X = Y

Before Boolean minimization
 Cout = A'BCin + AB'Cin
 + ABCin' + ABCin

After Boolean minimization
 Cout = BCin + ACin + AB

Full adder: Carry-out

Spring 2010 7 CSE370 - III - Realizing Boolean Logic

Full adder: Sum

Before Boolean minimization
 Sum = A'B'Cin + A'BCin'
 + AB'Cin' + ABCin

After Boolean minimization
 Sum = (A⊕B) ⊕ Cin

Spring 2010 8 CSE370 - III - Realizing Boolean Logic

Preview: A 2-bit ripple-carry adder

A1 B1

Cout Cin

Sum1

A

Sum

Cout Cin

B

1-Bit Adder

A2 B2

Sum2

Cout Cin 0

Spring 2010 9 CSE370 - III - Realizing Boolean Logic

Mapping truth tables to logic gates

  Given a truth table:
1.  Write the Boolean expression
2.  Minimize the Boolean expression
3.  Draw as gates
4.  Map to available gates

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

F = A’BC’+A’BC+AB’C+ABC
 = A’B(C’+C)+AC(B’+B)
 = A’B+AC

1

2

3

4

Spring 2010 10 CSE370 - III - Realizing Boolean Logic

Spring 2010 CSE370 - III - Realizing Boolean Logic 11

conserve
"bubbles"

conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NOR A

B

C

D

Z

Conversion between gate types

  Example: map AND/OR network to NOR-only network
A

B

C

D

Z

Spring 2010 CSE370 - III - Realizing Boolean Logic 12

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

 = { (A’ + B’) • (C’ + D’) }’

 = (A’ + B’)’ + (C’ + D’)’

 = (A • B) + (C • D)

Conversion between gate types (cont’d)

  Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

Spring 2010 CSE370 - III - Realizing Boolean Logic 13

Activity: convert to NAND gates

Spring 2010 CSE370 - III - Realizing Boolean Logic 14

X1 X2 X3 T2 T1

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Example: tally circuit (outputs # of 1s in inputs)

T1 = X1’ X2’ X3 + X1’ X2 X3’
 + X1 X2’ X3’ + X1 X2 X3

 = (X1’ X2’ + X1 X2) X3
 + (X1’ X2 + X1 X2’) X3’
 = (X1 xor X2)’ X3
 + (X1 xor X2) X3’
 = (X1 xor X2) xor X3

T2 = X1’ X2 X3 + X1 X2’ X3
 + X1 X2 X3’ + X1 X2 X3

 = X1’ (X2 X3) + X1 (X2 + X3)

Spring 2010 CSE370 - III - Realizing Boolean Logic 15

use of 3-input gate

From Boolean expressions to logic gates

  More than one way to map expressions to gates

  e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

Spring 2010 CSE370 - III - Realizing Boolean Logic 16

time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

  Just a sideways truth table
  but note how edges don’t line up exactly
  it takes time for a gate to switch its output!

Spring 2010 CSE370 - III - Realizing Boolean Logic 17

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

Spring 2010 CSE370 - III - Realizing Boolean Logic 18

Are all realizations equivalent?

  Under the same input stimuli, the three alternative
implementations have almost the same waveform behavior
  delays are different
  glitches (hazards) may arise – these could be bad, it depends
  variations due to differences in number of gate levels and structure

  The three implementations are functionally equivalent

Spring 2010 CSE370 - III - Realizing Boolean Logic 19

Which realization is best?

  Reduce number of inputs
  literal: input variable (complemented or not)

  can approximate cost of logic gate as 2 transistors per literal
  why not count inverters?

  fewer literals means less transistors
  smaller circuits

  fewer inputs implies faster gates
  gates are smaller and thus also faster

  fan-ins (# of gate inputs) are limited in some technologies
  the programmable logic we’ll be using later in the quarter

  Reduce number of gates
  fewer gates (and the packages they come in) means smaller circuits

  directly influences manufacturing costs

Spring 2010 CSE370 - III - Realizing Boolean Logic 20

Which realization is best? (cont’d)

  Reduce number of levels of gates
  fewer level of gates implies reduced signal propagation delays
  minimum delay configuration typically requires more gates

  wider, less deep circuits

  Hazards/glitches
  one without hazards may be preferable/necessary

  How do we explore tradeoffs between increased circuit delay
and size?
  automated tools to generate different solutions
  logic minimization: reduce number of gates and complexity
  logic optimization: reduction while trading off against delay

Spring 2010 CSE370 - III - Realizing Boolean Logic 21

Random logic gates

  Transistors quickly integrated into logic gates (1960s)
  Catalog of common gates (1970s)

  Texas Instruments Logic Data Book – the yellow “bible”
  all common packages listed and characterized (delays, power)
  typical packages:

  in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

  Today, very few of these parts are still in use
  However, parts libraries exist for chip design

  designers reuse already characterized logic gates on chips
  same reasons as before
  difference is that the parts don’t exist in physical inventory –

created as needed

Some logic gate components

Spring 2010 CSE370 - III - Realizing Boolean Logic 22

Quad 2-input NANDs – ‘00 Quad 2-input NORs – ‘02

6 inverters (NOTs) – ‘04 3 3-input NANDs – ‘10

