Combinational logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by perfect induction

Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to “1”):

 - Close switch (if A is “1” or asserted) and turn on light bulb (Z)
 - Open switch (if A is “0” or unasserted) and turn off light bulb (Z)

 \[Z = A \]
Switches (cont’d)

- Compose switches into more complex ones (Boolean functions):

 \[Z = A \text{ and } B \]

 \[Z = A \text{ or } B \]

Switching networks

- Switch settings
 - determine whether or not a conducting path exists to light the light bulb
- To build larger computations
 - use the light bulb (output of the network)
 to set other switches (inputs to another network)
Transistor networks

- Modern digital systems are designed in CMOS technology
 - MOS stands for Metal-Oxide on Semiconductor
 - C is for complementary because there are both normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches
 - similar, though easier to work with than relays.

MOS transistors

- MOS transistors have three terminals: drain, gate, and source
 - they act as switches in the following way:
 - if the voltage on the gate terminal is (some amount) higher/lower than the source terminal then a conducting path will be established between the drain and source terminals

\[
\begin{align*}
\text{n-channel} & : & \text{open when voltage at G is low} & \text{closes when:} \\
& & \text{voltage}(G) > \text{voltage} (S) + \epsilon
\end{align*}
\]

\[
\begin{align*}
\text{p-channel} & : & \text{closed when voltage at G is low} & \text{opens when:} \\
& & \text{voltage}(G) < \text{voltage} (S) - \epsilon
\end{align*}
\]
Most digital logic is CMOS

0V = Logic 0
1.8V = Logic 1

Multi-input logic gates

- CMOS logic gates are inverting
 - Easy to implement NAND, NOR, NOT while AND, OR, and Buffer are harder

Claude Shannon – 1938
Logic functions and Boolean algebra

- Any Boolean function can be expressed as a truth table
- Therefore it can be written as an expression in Boolean algebra using the operators: ', +, and •

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X • Y</th>
<th>X'</th>
<th>X' • Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

X, Y are Boolean algebra variables

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X'</th>
<th>Y'</th>
<th>X • Y</th>
<th>X' • Y</th>
<th>(X • Y) + (X' • Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean expression that is true when the variables X and Y have the same value and false, otherwise.

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - in general, there are \(2^{2^n}\) functions of n inputs

\[
\begin{align*}
X & \quad Y \\
\hline
0 & 0 | 0 & 0 \\
0 & 1 | 0 & 0 \\
1 & 0 | 0 & 1 \\
1 & 1 | 0 & 1 \\
\end{align*}
\]

16 possible functions (\(F_0-F_{15}\))
Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not $(X \text{nand} Y)$

- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X nor Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X nand Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- and NAND and NOR are "duals", that is, it's easy to implement one using the other

$$X \text{nand} Y = \text{not} \left(\left(\text{not} X \right) \text{nor} \left(\text{not} Y \right) \right)$$

$$X \text{nor} Y = \text{not} \left(\left(\text{not} X \right) \text{nand} \left(\text{not} Y \right) \right)$$

Boolean algebra

- An algebraic structure consists of
 - a set of elements B
 - binary operations $\{ +, \cdot \}$
 - and a unary operation $\{ ' \}$
 - such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: $a + b$ is in B $a \cdot b$ is in B
3. commutativity: $a + b = b + a$ $a \cdot b = b \cdot a$
4. associativity: $a + (b + c) = (a + b) + c$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
5. identity: $a + 0 = a$ $a \cdot 1 = a$
6. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
7. complementarity: $a + a' = 1$ $a \cdot a' = 0$
Axioms and theorems of Boolean algebra

- **identities**
 1. \(X + 0 = X \)
 1D. \(X \cdot 1 = X \)

- **nulls**
 2. \(X + 1 = 1 \)
 2D. \(X \cdot 0 = 0 \)

- **idempotency**
 3. \(X + X = X \)
 3D. \(X \cdot X = X \)

- **involution**
 4. \((X')' = X \)

- **complementarity**
 5. \(X + X' = 1 \)
 5D. \(X \cdot X' = 0 \)

- **commutativity**
 6. \(X + Y = Y + X \)
 6D. \(X \cdot Y = Y \cdot X \)

- **associativity**
 7. \((X + Y) + Z = X + (Y + Z) \)
 7D. \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) \)

- **distributivity**
 8. \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z) \)
 8D. \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z) \)

Axioms and theorems of Boolean algebra (cont’d)

- **uniting**
 9. \(X \cdot Y + X \cdot Y' = X \)
 9D. \((X + Y) \cdot (X + Y') = X \)

- **absorption**
 10. \(X + X \cdot Y = X \)
 10D. \(X \cdot (X + Y) = X \)
 11. \((X + Y') \cdot Y = X \cdot Y \)
 11D. \(X \cdot Y' + Y = X + Y \)

- **factoring**
 12. \((X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y \)
 12D. \(X \cdot Y + X' \cdot Z = (X + Z) \cdot (X' + Y) \)

- **consensus**
 13. \((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z \)
 13D. \((X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z) \)

- **de Morgan’s**
 14. \((X + Y + \ldots)' = X' \cdot Y' \cdot \ldots \)
 14D. \((X \cdot Y \cdot \ldots)' = X' + Y' + \ldots \)

- **generalized de Morgan’s**
 15. \(f'(X_1, X_2, \ldots, X_n, 0, 1, +, \cdot) = f(X'_1, X'_2, \ldots, X'_n, 1, 0, \cdot, +) \)
Axioms and theorems of Boolean algebra (cont’d)

- Duality
 - a dual of a Boolean expression is derived by replacing • by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - any theorem that can be proven is thus also proven for its dual!
 - a meta-theorem (a theorem about theorems)

- duality:
 \[X + Y + \ldots \Leftrightarrow X \cdot Y \cdot \ldots \]

- generalized duality:
 \[f(X_1, X_2, \ldots, X_n, 0, 1, +, \cdot) \Leftrightarrow f(X_1, X_2, \ldots, X_n, 1, 0, \cdot, +) \]

- Different than deMorgan’s Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

- Using the laws of Boolean algebra:
 - e.g., prove the theorem: \[X \cdot Y + X \cdot Y' = X \]
 - distributivity (8) \[X \cdot Y + X \cdot Y' = X \cdot (Y + Y') \]
 - complementarity (5) \[X \cdot (Y + Y') = X \cdot (1) \]
 - identity (1D) \[X \cdot (1) = X \]

 - e.g., prove the theorem: \[X + X \cdot Y = X \]
 - identity (1D) \[X + X \cdot Y = X \cdot 1 + X \cdot Y \]
 - distributivity (8) \[X \cdot 1 + X \cdot Y = X \cdot (1 + Y) \]
 - identity (2) \[X \cdot (1 + Y) = X \cdot (1) \]
 - identity (1D) \[X \cdot (1) = X \]
Activity

- Prove consensus theorem using the laws of Boolean algebra:
 - \((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z\)

<table>
<thead>
<tr>
<th>Ident</th>
<th>1. (X + 0 = X)</th>
<th>1D. (X + 1 = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null</td>
<td>2. (X + 1 = 1)</td>
<td>2D. (X \cdot 0 = 0)</td>
</tr>
<tr>
<td>Complementarity</td>
<td>5. (X \cdot X = 0)</td>
<td>5D. (X + X' = 1)</td>
</tr>
<tr>
<td>Commutativity</td>
<td>6. (X + Y = Y + X)</td>
<td>6D. (X + Y = Y + X)</td>
</tr>
<tr>
<td>Associativity</td>
<td>7. ((X + Y) + Z = X + (Y + Z))</td>
<td>7D. ((X + Y) + Z = X + (Y + Z))</td>
</tr>
<tr>
<td>Distributivity</td>
<td>8. ((X \cdot (Y + Z)) = (X \cdot Y) + (X \cdot Z))</td>
<td>8D. ((X \cdot (Y + Z)) = (X \cdot Y) + (X \cdot Z))</td>
</tr>
<tr>
<td>Factoring</td>
<td>12. ((X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y)</td>
<td>12D. ((X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y)</td>
</tr>
</tbody>
</table>

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

\[
(X + Y)' = X' \cdot Y'
\]
NOR is equivalent to AND with inputs complemented

\[
\begin{array}{ccc}
X & Y & X' \cdot Y' \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]

\[
(X \cdot Y)' = X' + Y'
\]
NAND is equivalent to OR with inputs complemented

\[
\begin{array}{ccc}
X & Y & X' + Y' \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
<th>S</th>
</tr>
</thead>
</table>
| 0 | 0 | 0 | 0 | 0
| 0 | 0 | 1 | 0 | 1
| 0 | 1 | 0 | 0 | 1
| 1 | 0 | 0 | 0 | 0
| 1 | 0 | 1 | 0 | 0
| 1 | 1 | 0 | 0 | 1
| 1 | 1 | 1 | 0 | 1

Cout = _________________________________

S = ___________________________________

Cout = _________________________________