
CSE 370 Homework 7 Solutions

1. Circuit Timing

The timing diagram for this negative edge detection circuit is shown in Figure 1

below. The slack for this circuit is calculated as follows:

setupicpdregisterpdcycleslack

setupicpdregisterpdcycle

tttTt

tttT

−−−=

++≥

log__

log__

where Tcycle is the clock period, tpd_register is the propagation delay through the

register, tpd_logic is the propagation delay through the logic, and tsetup is the setup

time for the flip-flop.

There are 2 long paths in this circuit:

a) register to register: slack = 8 – 2 – 1 – 2 = 3ns

b) input to register: slack = 8 – 3 – 2 – 2 = 1ns

Here, b is the critical path and the slack of the circuit is 1ns.

Thus the setup time of the second flip-flop is violated if more than 1ns of delay is

added to the path from input to the second register. In the figure below, the

setup/hold window is shown in gray.

Figure 1: Timing diagram for original negative edge detection circuit.

2. Circuit Timing with Clock Skew = 4ns

The figure below shows the timing diagram with the clock to the right register

delayed in time by 4ns. Since B is the input to the 2
nd

 register, it must meet the

timing constraints for the clock of that register. The gray boxes show the

setup/hold window around clock 2. This shows that both the setup and hold

times are violated. It can be seen that this register samples 0 instead of 1 so

the output does not change here.

The hold time violation is caused by the change in input 3ns after clk1. Since

the clk2 edge for the hold violation is the same edge just delayed by 4ns, there

is nothing we can do to avoid this hold violation. For example, slowing down

the clock would not help since it all depends on one edge, not two adjacent

edges. Therefore, you cannot get this circuit to work.

Figure 2: Timing diagram of circuit with 4ns clock skew. Output C is always 0 due to skew.

3. Circuit Timing with Clock Skew = 2ns

Now with a clock skew of 2ns, the output flip-flop attempts to capture the data

2ns earlier than in part2, but the data changes 1ns after the clock edge of the

second flip-flop. Therefore the hold time constraint is violated. If we ignore the

timing constraint, however, the output will go to 1 as shown.

Figure 3: Circuit with 2ns clock skew. Output should go unknown due to hold time violation, but this

shows the output if we ignore the hold time constraint.

4. Circuit Timing with Clock Skew = 4ns Reversed

A positive clock skew of 4ns is the same as a negative clock skew of 4ns. If you

assume that the input doesn’t change, then this is the same as question 2. If

you assume the input is fixed relative to CLK, then you get the following timing

diagram. The timing analysis of this circuit depends on the timing of the input.

If we assume the input is fixed relative to CLK, then it is not possible to fix this

circuit. If we can delay the input, and increase the clock period, then we can

get this circuit to work.

Figure 4: Circuit with 4ns clock skew in the reverse direction. Output goes unknown due to setup time

violation on output flip-flop, but this shows the output if we ignore the setup time constraint of the

second flip-flop.

5. Arbiter FSM

With the specified timing diagram, you have to use a Moore FSM. You can only

use a Mealy if you pass the outputs through a register.

Alast
{0,0}

Blast
{0,0}

AckA
{1,0}

AckB
{0,1}

00

Inputs = {ReqA,ReqB}
Outputs = {AckA,AckB}

10

x1

00 00

x11x

00 01

1x

10

01

Reset

Figure 5: An FSM diagram showing the Moore type implementation of a 2 user arbiter.

 State Transition Table

 Alast Blast AckA AckB

State

Encoding 00 01 10 11

S[1] S[0] ReqA ReqB NS[1] NS[0] AckA AckB
0 0 0 0 0 0 0 0
0 0 x 1 1 1 0 0
0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0
0 1 1 x 1 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 1 1 1 0
1 0 1 x 1 0 1 0
1 1 0 0 0 1 0 1
1 1 x 1 1 1 0 1
1 1 1 0 1 0 0 1

Table 1:State Transition Table for the 2 user arbiter.

 Next State and Output Equations

 qBqANS Re|Re]1[=

)Re]0[]1[(|)Re]0[]1[(|)Re]0[(|)ReRe(]0[qBSSqBSSqASqBqANS ⋅⋅⋅⋅⋅⋅=

]0[]1[SSAckA ⋅=

]0[]1[SSAckB ⋅=

 Circuit Implementation

Note: The boxes in the following circuit produce the functions for next state and

the outputs that were specified in the previous section.

Q

QSET

CLR

D

Q

QSET

CLR

D

NS[1]

NS[0]

ReqA

ReqB

clock

reset

AckA

AckBS[0]0

0

0

0

0

0

S[1]

0

0

0

0

0

0

S[1]
S[0]

S[1]

S[0]

Figure 6: Circuit implementation of the 2 user arbiter.

6. Program Counter and Squares Calculation

 Efficient Program to Compute the Squares:

// Simple program that generates squares

// R0=result, R1=increment, R2=dx (d/dx(x^2) = 2)

10110_000_00_000_000 // R0 = 0

10010_001_00_000_000 // R1 = R0 + 1 ...R1 = 1

10010_010_00_001_000 // R2 = R1 + 1 ...R2 = 2

10000_000_00_000_001 // R0 = R0 + R1 ...R0 = 1

10000_001_00_001_010 // R1 = R1 + R2

10000_000_00_000_001 // R0 = R0 + R1 ...R0 = 4

10000_001_00_001_010 // R1 = R1 + R2

10000_000_00_000_001 // R0 = R0 + R1 ...R0 = 9

10000_001_00_001_010 // R1 = R1 + R2

10000_000_00_000_001 // R0 = R0 + R1 ...R0 = 16

10000_001_00_001_010 // R1 = R1 + R2

10000_000_00_000_001 // R0 = R0 + R1 ...R0 = 25

10000_001_00_001_010 // R1 = R1 + R2

10000_000_00_000_001 // R0 = R0 + R1 ...R0 = 36

 Simulation Output:

