Lecture 2: Number Systems

Logistics

- Webpage is up! http://www.cs.washington.edu/370
- HW1 is posted on the web in the calender --- due 10/1 10:30am
- Third TA: Tony Chick chickt@cs.washington.edu
- Email list: please sign up on the web.
- Labl starts next week: sections MTW --- show up to pick up your lab kit
- Last lecture
- Class introduction and overview
- Today
- Binary numbers
- Base conversion
- Number systems k Twos-complement
- A/D and D/A conversion CSE370, Lecture 2

CSE 370 - Autumn 2008
YoKy Matsuoka
With Vinoe Zanella and Brian Dellon

Organization:
Lecture Times and Offico Hours
Teatboak
Aradamic Accommodations
Coursework
Course Goals and Sylabus
Course Stucture. Polcies and Guidelinas
Calendar
Software Took
Computina Labs and Tools
Actwe HDL Tutomala

The "WHY" slide

Binary numbers

- All computers work with 0's and 1's so it is like learning alphabets before learning English
- Base conversion
- For convenience, people use other bases (like decimal, hexdecimal) and we need to know how to convert from one to another.
- Number systems
- There are more than one way to express a number in binary. So 1010 could be $-2,-5$ or -6 and need to know which one.
A/D and D/A conversion
- Real world signals come in continuous/analog format and it is good to know generally how they become 0's and 1's (and visa versa).

Digital

- Digital = discrete
- Binary codes (example: BCD)
- Decimal digits 0-9
- Binary codes
- Represent symbols using binary digits (bits)
- Digital computers:
- I/O is digital

K ASCII, decimal, etc.

- Internal representation is binary

Decimal	BCD
Symbols	Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

k Process information in bits

The basics: Binary numbers

- Bases we will use
- Binary: Base 2
- Octal: Base 8
- Decimal: Base 10
- Hexadecimal: Base 16
- Positional number system
- $101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
- $63_{8}=6 \times 8^{1}+3 \times 8^{0}$
- $\mathrm{Al}_{16}=10 \times 16^{1}+1 \times 16^{0}$
- Addition and subtraction

$$
\begin{array}{rr}
1011 & 1011 \\
+1010 \\
\hline 10101 & -0110 \\
\hline 0101
\end{array}
$$

Binary \rightarrow hex/decimal/octal conversion

- Conversion from binary to octal/hex
- Binary: 10011110001
- Octal: $10|011| 110 \mid 001=2361_{8}$
- Hex: $\quad 100|1111| 0001=4 \mathrm{Fl}_{16}$
- Conversion from binary to decimal
- $101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5_{10}$
- $63.4_{8}=6 \times 8^{1}+3 \times 8^{0}+4 \times 8^{-1}=51.5_{10}$
- $A 1_{16}=10 \times 16^{1}+1 \times 16^{0}=161_{10}$

Decimal \rightarrow binary/octal/hex conversion

Binary			Octal		
	Quotient	Remainder		Quotient	Remainder
$56 \div 2=$	28	0	$56 \div 8=$	7	0
$28 \div 2=$	14	0	$7 \div 8=$	0	7
$14 \div 2=$	7	0			
$7 \div 2=$	3	1			
$3 \div 2=$	1	1	$56_{10}=1$	111000_{2}	
$1 \div 2=$	0	1	$56_{10}=7$		

-Why does this work?

- $\mathrm{N}=56_{10}=111000_{2}$
- $\mathrm{Q}=\mathrm{N} / 2=56 / 2=111000 / 2=11100$ remainder 0
- Each successive divide liberates an LSB (least significant bit)

Number systems

- How do we write negative binary numbers?
- Historically: 3 approaches
- Sign-and-magnitude
- Ones-complement
- Twos-complement
- For all 3, the most-significant bit (MSB) is the sign digit
- 0 三positive
- 1 ミ negative
- twos-complement is the important one
- Simplifies arithmetic
- Used almost universally

Sign-and-magnitude

- The most-significant bit (MSB) is the sign digit
- 0 三positive
- 1 ミ negative
- The remaining bits are the number's magnitude
- Problem 1: Two representations for zero
- $0=0000$ and also -0 = 1000
- Problem 2: Arithmetic is cumbersome

Add		Subtract		Compare and subtract		
0100	4	0100	0100	-4	1100	1100
+0011	-3	+1011	-0011	+3	+0011	-0011
$=0111$	$=1$	$\neq 1111$	$=0001$	-1	$\neq 1111$	$=1001$

Ones-complement

- Negative number: Bitwise complement positive number
- $0011 \equiv 3_{10}$
- $1100 \equiv-3_{10}$
- Solves the arithmetic problem

Add	Invert, add, add carry		Invert and add		
4	0100	4	0100	-4	1011
+3	+0011	-3	+1100	+3	+0011
$=7$	$=0111$	$=1$	10000	-1	1110
		add carry:	+1		
	$=0001$				

- Remaining problem: Two representations tor zero
- $0=0000$ and also $-0=1111$

Twos-complement

- Negative number: Bitwise complement plus one
- $0011 \equiv 3_{10}$
- $1101 \equiv-3_{10}$
- Number wheel
- Only one zero!
- MSB is the sign digit
$\square 0 \equiv$ positive
■ 1 negative

Twos-complement (con't)

- Complementing a complement $\boldsymbol{\partial}$ the original number
- Arithmetic is easy
- Subtraction = negation and addition
\longleftarrow Easy to implement in hardware
Add Invert and add Invert and add

4	0100	4	0100	-4	1100
+3	+0011	-3	+1101	+3	+0011
$=7$	$=0111$	$=1$	10001	-1	1111
		drop carry	$=0001$		

Miscellaneous

- Twos-complement of non-integers
- $1.6875_{10}=01.1011_{2}$
- $-1.6875_{10}=10.0101_{2}$
- Sign extension
- Write +6 and -6 as twos complement L 0110 and 1010
- Sign extend to 8 -bit bytes

K 00000110 and 11111010

- Can't infer a representation from a number
- 11001 is 25 (unsigned)
- 11001 is -9 (sign magnitude)
- 11001 is -6 (ones complement)
- 11001 is -7 (twos complement)

Twos-complement overflow

- Summing two positive numbers gives a negative result
- Summing two negative numbers gives a positive result

$-7-3 \Rightarrow+6$
- Make sure to have enough bits to handle overflow

Gray and BCD codes

Decimal	Gray	Decimal	BCD
Symbols	Code	Symbols	Code
0	0000	0	0000
1	0001	1	0001
2	0011	2	0010
3	0010	3	0011
4	0110	4	0100
5	0111	5	0101
6	0101	6	0110
7	0100	7	0111
8	1100	8	1000
9	1101	9	1001

The physical world is analog

- Digital systems need to
- Measure analog quantities

K Speech waveforms, etc

- Control analog systems
\mathfrak{k} Drive motors, etc
- How do we connect the analog and digital domains?
- Analog-to-digital converter (A/D)

K Example: CD recording

- Digital-to-analog converter (D/A)

Example: CD playback

Sampling

Quantization

- Conversion from analog to discrete values
- Quantizing a signal
- We sample it

Signal Sampling
Datel Data Acquisition and Conversion Handbook

Conversion

- Encoding

- Assigning a digital word to each discrete value
- Encoding a quantized signal
- Encode the samples
- Typically Gray or binary codes

Datel Data Acquisition and
Conversion Handbook

