
Lecture 27

Logistics
HW8 due Friday
Ants problem due FridayAnts problem due Friday
Lab kit must be returned to Tony by Friday
Review Sunday 12/7 3pm, Location TBD

Last lecture
State encoding

One-hot encoding
Output encoding

1CSE370, Lecture 25

Today:
Optimizing FSMs

Pipelining
Retiming
Partitioning

27

Example: Digital combination lock

An output-encoded FSM
Punch in 3 values in sequence and the door opens
If there is an error the lock must be resetIf there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: sequence of number values, reset
Outputs: door open/close

resetvaluenew

2CSE370, Lecture 25

open/closed

clock

22 27

C1 C2 C3
mux

control
4 4 4

C1i C2i C3i

mux
control

valuei

Design the datapath

comparator equal

multiplexer control

4

4
value

control

Choose simple control
3-wire mux for datapath

3CSE370, Lecture 25

equal

3 wire mux for datapath
Control is 001, 010, 100

Open/closed bit for lock state
Control is 0/1

22 27

Output encode the FSM

FSM outputs
Mux control is 100, 010, 001
Lock control is 0/1Lock control is 0/1

State are: S0, S1, S2, S3, or ERR
Can use 3, 4, or 5 bits to encode
Have 4 outputs, so choose 4 bits

Encode mux control and lock control in state bits
Lock control is first bit, mux control is last 3 bits
S0 = 0001 (lock closed, mux first code)
S1 0010 (l k l d d d)

4CSE370, Lecture 25

S1 = 0010 (lock closed, mux second code)
S2 = 0100 (lock closed, mux third code)
S3 = 1000 (lock open)

ERR = 0000 (error, lock closed)

22 27

Encode 4 state bits
closed

not equal
& not equal

ERR

A clever way for ERR is to use Preset/reset
in existing flipflops.

closed
mux=C1

start equal
& new

& new not equal
& new not equal

& new

not newnot newnot new

S0 S1 S2 S3
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

Not equal & new

5CSE370, Lecture 25

S0+ = S0N’
S1+ = S0EN + S1N’
S2+ = S1EN + S2N’
S3+ = S2EN + S3

26

Preset0 = start
Preset1,2,3 = 0
Reset0 = start’(E’N + (Q0+Q1+Q2+Q3)’)
Reset1,2,3 = start + (E’N + (Q0+Q1+Q2+Q3)’)

Not equal & new
Already in ERR

27

D0 = Q0N’
D1 = Q0EN + Q1N’
D2 = Q1EN + Q2N’
D3 = Q2EN + Q3

S0

S1

S0

S0
E
N

Preset0 = start
Preset1,2,3 = 0
Reset0 = start’(E’N + (Q0+Q1+Q2+Q3)’)
Reset1,2,3 = start + (E’N + (Q0+Q1+Q2+Q3)’) S2

S1
N’

S1
E
N

S2
N’

S0

6CSE370, Lecture 2526

S3

S2
E
N

S0
S1
S2
S3

27

FSM design

FSM-design procedure
1.State diagramg
2.state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

7CSE370, Lecture 2526 27

Last topic: more FSM optimization techniques

Want to optimize FSM for many reasons beyond state
minimization and efficient encoding

Additional techniques
Pipelining --- allows faster clock speed
Retiming --- can reduce registers or change delays
Partitioning --- can divide to multiple devices, simpler logic

8CSE370, Lecture 2527

Pipelining related definitions

Latency: Time to perform a computation
Data input to data output

Throughput: Input or output data rate
Typically the clock rate

Combinational delays drive performance
Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output
Latency ∝ n * d (in sec)
Th h t 1/d (i H)

9CSE370, Lecture 25

Throughput ∝ 1/d (in Hz)

27

Pipelining

What?
Subdivide combinational logic
Add registers between logic

Logic Reg
Add registers between logic

Why?
Trade latency for throughput
Increased throughput

Reduce logic delays
Increase clock speed

May increased latency
Logic Reg Logic Reg

10CSE370, Lecture 25

Increase circuit utilization
Simultaneous computations

27

Pipelining

When?
Need throughput more than latency

Signal processing

Reg Logic Reg

Signal processing
Logic delays > setup/hold times
Acyclic logic

Where?
At natural breaks in the
combinational logic
Adding registers makes sense

11CSE370, Lecture 2527

Retiming

Pipelining adds registers
To increase the clock speed

Retiming moves registers around
Reschedules computations to optimize performance

Change delay patterns
Reduce register count

Without altering functionality

12CSE370, Lecture 2527

Retiming examples

Reduce register count

a D Q
a D Q

Change output delays

a
b d

xD Q
b d

x
D Q

13CSE370, Lecture 2527

FSM partitioning

Break a large FSM into two or more smaller FSMs

RationaleRationale
Less states in each partition

Simpler minimization and state assignment
Smaller combinational logic
Shorter critical path

But more logic overall

Partitions are synchronous
Same clock!!!

14CSE370, Lecture 25

Same clock!!!

27

Example: Partition the machine

Partition into two halves

C1

C2

C3

S1

S2

S6

S5

15CSE370, Lecture 25

C4 C5S3 S4

27

Introduce idle states

SA and SB handoff control between machines
C1

S1 S6

C1 S6
C1•S1

S1
(C2•S6)’

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

16CSE370, Lecture 25

C2

C5•S2 S4

S5SB C3•S2+
C4•S3

(C1•S1+
C3•S2+
C4•S3+
C5•S2)’

C4S3

S2 SA

C2•S6

C3+C5

(C2 S6)

27

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

S1 S6
C1

SAS1
C1

Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state

17CSE370, Lecture 25

S1 S6
C2

SAS1
C2•S6

p

27

Partitioning rules (con’t)

Rule #3: Multiple transitions with same source or destination
Source ⇒ Replace by transitions to idle state (SA)

S2

S3

S5

S4C4 C5

C3
S2

S3

SA

C3+C5

C4

S5

S4C5•S2

SB

C3•S2 +
C4•S3

Destination ⇒ Replace with exit transitions from idle state

18CSE370, Lecture 25

SAS1
C2•S6

C2•S6

Rule #4: Hold condition for idle state
OR exit conditions and invert

27

Mealy versus Moore partitions

Mealy machines undesirable
Inputs can affect outputs immediately

“output” can be a handoff to another machine!!!output can be a handoff to another machine!!!

Moore machines desirable
Input-to-output path always broken by a flip-flop
But…may take several clocks for input to propagate to output

19CSE370, Lecture 2527

Example: Six-state up/down counter

Break into 2 parts

U t

D

U
S0

S1

S5

S4

UU

D

D
D

D

D

U ≡ count up
D ≡ count down

20CSE370, Lecture 25

S2 S3
U

U

U D

27

Example: 6 state up/down counter (con’t)

Count sequence S0, S1, S2, S3, S4, S5
S2 goes to SA and holds, leaves after S5
S t S d h ld l ft S

D•S0

U
S5

S4

U

D
SB(D•S0+

S0

S1

U U•S5

D D
SA (D•S3 +

S5 goes to SB and holds, leaves after S2
Down sequence is similar

21CSE370, Lecture 25

S3

S4

UU•S2

DD

SBU•S2)’D•S3

U
S2

S1

U

D

SA U•S5)’

27

Minimize communication between partitions

Ideal world: Two machines handoff control
Separate I/O, states, etc.

Real world: Minimize handoffs and common I/O
Minimize number of state bits that cross boundary
Merge common outputs

22CSE370, Lecture 2527

Done!

23CSE370, Lecture 2527

