Lecture 27

- Logistics

- HW8 due Friday
- Ants problem due Friday
- Lab kit must be returned to Tony by Friday
- Review Sunday 12/7 3pm, Location TBD
- Last lecture
- State encoding
\boldsymbol{K} One-hot encoding
\boldsymbol{k} Output encoding
- Today:
- Optimizing FSMs
\boldsymbol{K} Pipelining
\boldsymbol{k} Retiming
k Partitioning

Example: Digital combination lock

- An output-encoded FSM
- Punch in 3 values in sequence and the door opens
- If there is an error the lock must be reset
- After the door opens the lock must be reset
- Inputs: sequence of number values, reset
- Outputs: door open/close

Design the datapath

- Choose simple control
- 3 -wire mux for datapath
kControl is 001, 010, 100
- Open/closed bit for lock state \boldsymbol{k} Control is 0/1

Output encode the FSM

- FSM outputs
- Mux control is 100, 010, 001
- Lock control is $0 / 1$
- State are: S0, S1, S2, S3, or ERR
- Can use 3, 4, or 5 bits to encode
- Have 4 outputs, so choose 4 bits
\boldsymbol{K} Encode mux control and lock control in state bits
\boldsymbol{K} Lock control is first bit, mux control is last 3 bits

$$
S 0=0001 \text { (lock closed, mux first code) }
$$

S1 $=0010$ (lock closed, mux second code)
S2 $=0100$ (lock closed, mux third code)
S3 = 1000 (lock open)
$E R R=0000$ (error, lock closed)

$$
\begin{aligned}
& \mathrm{D}_{0}=\mathrm{Q}_{0} \mathrm{~N}^{\prime} \\
& \mathrm{D}_{1}=\mathrm{Q}_{0} \mathrm{EN}+\mathrm{Q}_{1} \mathrm{~N}^{\prime} \\
& \mathrm{D}_{2}=\mathrm{Q}_{1} E N+\mathrm{Q}_{2} \mathrm{~N}^{\prime} \\
& \mathrm{D}_{3}=\mathrm{Q}_{2} \mathrm{EN}+\mathrm{Q}_{3}
\end{aligned}
$$

Preset $_{0}=$ start
Preset $_{1,2,3}=0$
Reset $_{0}=\quad \operatorname{start}^{\prime}\left(\mathrm{E}^{\prime} \mathrm{N}+\left(\mathrm{Q}_{0}+\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}\right)^{\prime}\right)$
Reset $_{1,2,3}=$ start $+\left(E^{\prime} N+\left(Q_{0}+Q_{1}+Q_{2}+Q_{3}\right)^{\prime}\right)$

CSE370, Lecture 27

FSM design

FSM-design procedure

1. State diagram
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

Last topic: more FSM optimization techniques

- Want to optimize FSM for many reasons beyond state minimization and efficient encoding
- Additional techniques
- Pipelining --- allows faster clock speed
- Retiming --- can reduce registers or change delays
- Partitioning --- can divide to multiple devices, simpler logic

Pipelining related definitions

- Latency: Time to perform a computation
- Data input to data output
- Throughput: Input or output data rate
- Typically the clock rate
- Combinational delays drive performance
- Define $d \equiv$ delay through slowest combinational stage
$\mathrm{n} \equiv$ number of stages from input to output
- Latency $\propto \mathrm{n}$ * $\mathrm{d} \quad$ (in sec)
- Throughput $\propto 1 / \mathrm{d} \quad($ in Hz$)$

Pipelining

- What?
- Subdivide combinational logic
- Add registers between logic
- Why?
- Trade latency for throughput
- Increased throughput
\boldsymbol{K} Reduce logic delays \boldsymbol{K} Increase clock speed
- May increased latency
- Increase circuit utilization \boldsymbol{k} Simultaneous computations

Pipelining

When?

- Need throughput more than latency \boldsymbol{K} Signal processing
- Logic delays > setup/hold times
- Acyclic logic
- Where?
- At natural breaks in the combinational logic
- Adding registers makes sense

Retiming

- Pipelining adds registers
- To increase the clock speed
- Retiming moves registers around
- Reschedules computations to optimize performance
\boldsymbol{K} Change delay patterns
\boldsymbol{K} Reduce register count
- Without altering functionality

Retiming examples

- Reduce register count
a-DQ
$b-D$

- Change output delays

FSM partitioning

- Break a large FSM into two or more smaller FSMs
- Rationale
- Less states in each partition
$\boldsymbol{\Sigma}$ Simpler minimization and state assignment
\boldsymbol{K} Smaller combinational logic
$\boldsymbol{\Sigma}$ Shorter critical path
- But more logic overall
- Partitions are synchronous
- Same clock!!!

Example: Partition the machine

- Partition into two halves

Introduce idle states

- SA and SB handoff control between machines

Partitioning rules

Rule \#1: Source-state transformation Replace by transition to idle state (SA)

Rule \#2: Destination state transformation Replace with exit transition from idle state

Partitioning rules (con't)

Rule \#3: Multiple transitions with same source or destination Source \Rightarrow Replace by transitions to idle state (SA) Destination \Rightarrow Replace with exit transitions from idle state

Rule \#4: Hold condition for idle state OR exit conditions and invert

Mealy versus Moore partitions

- Mealy machines undesirable
- Inputs can affect outputs immediately
\boldsymbol{K} "output" can be a handoff to another machine!!!
- Moore machines desirable
- Input-to-output path always broken by a flip-flop
- But...may take several clocks for input to propagate to output

Example: Six-state up/down counter

- Break into 2 parts

Example: 6 state up/down counter (con't)

- Count sequence $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$
- S_{2} goes to S_{A} and holds, leaves after S_{5}
- S_{5} goes to S_{B} and holds, leaves after S_{2}
- Down sequence is similar

Minimize communication between partitions

- Ideal world: Two machines handoff control
- Separate I/O, states, etc.
- Real world: Minimize handoffs and common I/O
- Minimize number of state bits that cross boundary
- Merge common outputs

Done!

