
Lecture 26

Logistics
HW8 due Friday
Ant extra credit due FridayAnt extra credit due Friday
Final exam a week from today, 12/8 8:30am-10:20am here
Review time/place TBA

Last lecture
Simplification

Today
St t di

1CSE370, Lecture 24

State encoding
One-hot encoding
Output encoding

26

Example: A vending machine

15 cents for a cup of coffee

Doesn’t take pennies or quarters ResetDoesn t take pennies or quarters

Doesn’t provide any change

FSM-design procedure
1. State diagram

Vending
Machine

FSM

N

D

OpenCoin
Sensor

Release
Mechanism

2CSE370, Lecture 24

g
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

26

Clock

A vending machine: State minimization

present inputs next output
t t D N t t

Reset
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0

0¢

5¢

N

N

D

3CSE370, Lecture 2426

symbolic state table

¢
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1N + D

10¢

15¢
[open]

D

A vending machine: State encoding

present state inputs next state output
Q1 Q0 D N D1 D0 openQ1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0

4CSE370, Lecture 2426

1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

A vending machine: Logic minimization

0 0 1 1

Q1D1

0 1 1 0

Q1D0

0 0 1 0

Q1Open

0 1 1 1

X X X X

1 1 1 1

Q0

N

D

0 1 1 0

1 0 1 1

X X X X

0 1 1 1
Q0

N

D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0
Q0

N

D

5CSE370, Lecture 2426

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

A vending machine: Implementation

6CSE370, Lecture 2426

State encoding

Assume n state bits and m states
2n! / (2n – m)! possible encodings

Example: 3 state bits 4 states 1680 possible state assignmentsExample: 3 state bits, 4 states, 1680 possible state assignments

Want to pick state encoding strategy that results in
optimizing your criteria

FSM size (amount of logic and number of FFs)
FSM speed (depth of logic and fan-in/fan-out)
FSM ease of design or debugging

7CSE370, Lecture 2426

State-encoding strategies

No guarantee of optimality
An intractable problem

Most common strategies
Binary (sequential) – number states as in the state table
Random – computer tries random encodings
Heuristic – rules of thumb that seem to work well

e.g. Gray-code – try to give adjacent states (states with an arc
between them) codes that differ in only one bit position

One-hot – use as many state bits as there are states

8CSE370, Lecture 24

Output – use outputs to help encode states
Hybrid – mix of a few different ones (e.g. One-hot +
heuristic)

26

One-hot encoding

One-hot: Encode n states using n flip-flops
Assign a single “1” for each state

Example: 0001 0010 0100 1000Example: 0001, 0010, 0100, 1000
Propagate a single “1” from one flip-flop to the next

All other flip-flop outputs are “0”

The inverse: One-cold encoding
Assign a single “0” for each state

Example: 1110, 1101, 1011, 0111
Propagate a single “0” from one flip-flop to the next

All th fli fl t t “1”

9CSE370, Lecture 24

All other flip-flop outputs are “1”

“almost one-hot” encoding (modified one-hot encoding)
Use no-hot (000…0) for the initial (reset state)
Assumes you never revisit the reset state till reset again.

26

One-hot encoding (con’t)

Often the best/convenient approach for FPGAs
FPGAs have many flip-flops

Draw FSM directly from the state diagram
+ One product term per incoming arc
- Complex state diagram ⇒ complex design
- Many states ⇒ many flip flops

10CSE370, Lecture 2426

Example: A vending machine … again

15 cents for a cup of coffee

Doesn’t take pennies or quarters ResetDoesn t take pennies or quarters

Doesn’t provide any change

FSM-design procedure
1. State diagram

Vending
Machine

FSM

N

D

OpenCoin
Sensor

Release
Mechanism

11CSE370, Lecture 24

g
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

26

Clock

One-hot encoded transition table

0 0 0 0 0 0 0 0 0

present state inputs next state output
Q3Q2Q1Q0 D N D3 D2D1D0 open Reset

D' N'0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 – – – – –

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 – – – – –

0¢

5¢

N

N

10¢

D

D

D N

D' N'

D' N'

12CSE370, Lecture 24

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 – – – – –

1 0 0 0 – – 1 0 0 0 1

N + D

10¢

15¢
[open] 1

26

Designing from the state diagram

Reset

D' N'

D0 = Q0D’N’

D1 = Q0N + Q1D’N’

0¢

5¢

N

N

10¢

D

D

D' N'

D' N'

D1 Q0N + Q1D N

D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

13CSE370, Lecture 24

N + D
15¢

[open] 1

26

Output encoding

Reuse outputs as state bits
Why create new functions when you can use outputs?
Bits from state assignments are the outputs for that stateBits from state assignments are the outputs for that state

Take outputs directly from the flip-flops

Combinational
Logic Outputs

State OutputsState Inputs

Inputs

14CSE370, Lecture 24

ad hoc - no tools
Yields small circuits for most FSMs

Storage Elements

26

Vending machine
--- already in output encoding form

Reset

D' N'

D0 = Q0D’N’

D1 = Q0N + Q1D’N’

0¢

5¢

N

N

10¢

D

D

D' N'

D' N'

D1 Q0N + Q1D N

D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

15CSE370, Lecture 24

N + D
15¢

[open] 1

26

Example: Digital combination lock

An output-encoded FSM
Punch in 3 values in sequence and the door opens
If there is an error the lock must be resetIf there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: sequence of number values, reset
Outputs: door open/close

resetvaluenew

16CSE370, Lecture 24

open/closed

clock

26

Separate data path and control

Design datapath first
After the state diagram
Before the state encoding

Control has 2 outputs
Mux control to datapath
Lock open/closedBefore the state encoding Lock open/closed

resetnewC1 C2 C3

multiplexer

t ll

mux
control

4 4 4

4

17CSE370, Lecture 24

open/closed

comparatorvalue
equal

controller
clock

4

4

26

Draw the state diagram

closed

closed
mux=C1

start equal

not equal
& new not equal

& new not equal
& newS0 S1 S2 S3

ERR

closed
mux=C2 equal

closed
mux=C3 equal open

18CSE370, Lecture 24

mux C1 equa
& new

not newnot newnot new

mux C2 equa
& new

mux C3 equa
& new

26

C1 C2 C3
mux

control
4 4 4

C1i C2i C3i

mux
control

valuei

Design the datapath

comparator equal

multiplexer control

4

4
value

control

Choose simple control
3-wire mux for datapath

19CSE370, Lecture 24

equal

3 wire mux for datapath
Control is 001, 010, 100

Open/closed bit for lock state
Control is 0/1

26

Output encode the FSM

FSM outputs
Mux control is 100, 010, 001
Lock control is 0/1Lock control is 0/1

State are: S0, S1, S2, S3, or ERR
Can use 3, 4, or 5 bits to encode
Have 4 outputs, so choose 4 bits

Encode mux control and lock control in state bits
Lock control is first bit, mux control is last 3 bits
S0 = 0001 (lock closed, mux first code)
S1 0010 (l k l d d d)

20CSE370, Lecture 24

S1 = 0010 (lock closed, mux second code)
S2 = 0100 (lock closed, mux third code)
S3 = 1000 (lock open)

ERR = 0000 (error, lock closed)

26

FSM has 4 state bits and 2 inputs...

Output encoded!
Outputs and state bits are the same

How do we minimize the logic?
FSM has 4 state bits and 2 inputs (equal, new)
6-variable kmap for all five states?

Notice the state assignment is close to one-hot
ERR state (0000) is only deviation
Is there a clever design we can use?

21CSE370, Lecture 2426

Encode 4 state bits
closed

not equal
& not equal

ERR

A clever way for ERR is to use Preset/reset
in existing flipflops.

closed
mux=C1

start equal
& new

& new not equal
& new not equal

& new

not newnot newnot new

S0 S1 S2 S3
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

Not equal & new

22CSE370, Lecture 24

S0+ = S0N’
S1+ = S0EN + S1N’
S2+ = S1EN + S2N’
S3+ = S2EN + S3

26

Preset0 = start
Preset1,2,3 = 0
Reset0 = start’(E’N + (Q0+Q1+Q2+Q3)’)
Reset1,2,3 = start + (E’N + (Q0+Q1+Q2+Q3)’)

Not equal & new
Already in ERR

D0 = Q0N’
D1 = Q0EN + Q1N’
D2 = Q1EN + Q2N’
D3 = Q2EN + Q3

S0

S1

S0

S0
E
N

Preset0 = start
Preset1,2,3 = 0
Reset0 = start’(E’N + (Q0+Q1+Q2+Q3)’)
Reset1,2,3 = start + (E’N + (Q0+Q1+Q2+Q3)’) S2

S1
N’

S1
E
N

S2
N’

S0

23CSE370, Lecture 2426

S3

S2
E
N

S0
S1
S2
S3

FSM design

FSM-design procedure
1.State diagramg
2.state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

24CSE370, Lecture 2426

