
Lecture 18
Logistics

HW5 due today (with extra 10%)
HW5 due Friday (20% off on Mon 10:29am, Sol’n posted 10:30am)y (, p)
HW6 out, due Wednesday
My office hours canceled on Friday (I am out of town)
Brian will cover lecture on Friday
Midterm 2 covers materials up to Monday lecture & HW6

Last lecture
Registers/counters
D i t

1CSE370, Lecture 18

Design counters

Today
More counter designs
Finite state machine design

18

The “WHY” slide

Finite State Machine (FSM)Finite State Machine (FSM)
This is what we have been waiting for in this class. Using
combinational and sequential logics, now you can design a lot
of clever digital logic circuits for functional products. We will
learn different steps you take to go from word problems to
logic circuits. We first talk about a simplified version of FSM
which is a counter.

2CSE370, Lecture 1818

Another 3-bit up counter: with T flip flops

1. Draw a state diagram

2. Draw a state-transition table

3. Encode the next-state functions
Minimize the logic using k-maps

4. Implement the design

3CSE370, Lecture 1818

1. Draw a state diagram

010

100

011001

000 3-bit up-counter

4CSE370, Lecture 18

110 101111

18

2. Draw a state-transition table

Like a truth-table
State encoding is easy for counters → Use count value

current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4

010

100

011001

000 3-bit up-counter

5CSE370, Lecture 18

4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

110 101111

18

3. Encode the next state functions

T flip-flops C3T1T1 :=

T Q
T2 :=

1 1 1 1
C1
1

C2

C1

C3

C1

T2

T Q

C3 C2 C1 N3 N2 N1 T3 T2 T1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1

T3 :=

0
0
0

0
1
0

1
1
1

0 0 0 0
1 1 1 1

1 1 1 1
1 1 1 1

C1 C2

6CSE370, Lecture 18 C2

C3

C1

T3

C2
0 0 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

18

0
1
0
0
0
1

0
1
0
1
0
1

1
1
1
1
1
1

0 0 0 0
0 1 1 0

4. Implement the design

T Q T Q T Q

C1 C2 C3

7CSE370, Lecture 1818

CLK

One more counter example:
A 5-state counter with D flip flops

Counter repeats 5 states in sequence
Sequence is 000, 010, 011, 101, 110, 000

000 110

Step 1: State diagram Step 2: State transition table
Assume D flip-flops

C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 X X X

Present State Next State

8CSE370, Lecture 18

010

011

101 0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 X X X
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 X X X

18

5-state counter (con’t)

Step 3: Encode the next state functions

C

B

A

0 0 0 X

X 1 X 1

C+ C

B

A

1 1 0 X

X 0 X 1

B+ C

B

A

0 1 0 X

X 1 X 0

A+

9CSE370, Lecture 18

A+ = BC'C+ = A B+ = B' + A'C'

18

5-state counter (con’t)

Step 4: Implement the design

D Q D Q D QC B A

CLK

A

A' B

10CSE370, Lecture 18

A'
C'
B'

B
C'

18

5-state counter (con’t)

Is our design robust?
What if the counter starts in a 111 state?

001

100

111

Does our counter get
stuck in invalid states???

000 110

11CSE370, Lecture 18

100

010

011

101

18

5-state counter (con’t)

Back-annotate our design to check it
Draw state diagramFill in state transition table

000

010

011

101

110C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0

Present State Next State 001

12CSE370, Lecture 18

0111 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

100

111

The proper methodology is to design
your counter to be self-starting

A+ = BC'

C+ = A

B+ = B' + A'C'

18

Self-starting counters

Invalid states should always transition to valid states
Assures startup
Assures bit-error toleranceAssures bit-error tolerance

Design your counters to be self-starting
Draw all states in the state diagram
Fill in the entire state-transition table
May limit your ability to exploit don't cares

Choose startup transitions that minimize the logic

13CSE370, Lecture 1818

Finite state machines: more than counters

FSM: A system that visits a finite number of logically
distinct states

Counters are simple FSMs
Outputs and states are identical
Visit states in a fixed sequence without inputs

FSMs are typically more complex than counters
Outputs can depend on current state and on inputs
State sequencing depends on current state and on inputs

14CSE370, Lecture 1818

FSM design

Counter-design procedure
1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

FSM-design procedure
1. State diagram
2. state-transition table
3. State minimization
4 State encoding

15CSE370, Lecture 18

4. State encoding
5. Next-state logic minimization
6. Implement the design

18

Example: A vending machine

15 cents for a cup of coffee

Doesn’t take pennies or quarters ResetDoesn t take pennies or quarters

Doesn’t provide any change

FSM-design procedure
1. State diagram

Vending
Machine

FSM

N

D

OpenCoin
Sensor

Release
Mechanism

16CSE370, Lecture 18

g
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

18

Clock

A vending machine:
(conceptual) state diagram

Reset (from all states)

S0

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

Draw self-loops for
N’ + D’ for S0 to S3

Also draw self-loops for
1 for S4 to S8

17CSE370, Lecture 1818

[p][p] [p]

S8
[open]

D

S7
[open]

N

A vending machine: State transition table

present inputs next output
state D N state open

S0 0 0 S0 0S0 0 0
0 1
1 0
1 1

S2 0 0 S2 0
0 1 S5 0
1 0 S6 0
1 1 X X

S0 0
S1 0
S2 0
X X

S1 0 0 S1 0
0 1 S3 0
1 0 S4 0
1 1 X X

18CSE370, Lecture 1818

S3 0 0 S3 0
0 1 S7 0
1 0 S8 0
1 1 X X

S4 X X S4 1
S5 X X S5 1
S6 X X S6 1
S7 X X S7 1
S8 X X S8 1

