
Lecture 17

Logistics
HW5 due on Wednesday
HW6 will be out on Wednesday due in one weekHW6 will be out on Wednesday, due in one week
Lab6 this week

Last lecture
Memory storage elements
State diagrams

Today
R i t

1CSE370, Lecture 14

Registers
Counters
Start of Finite State Machine (FSM)

17

The “WHY” slide

Registers and CountersRegisters and Counters
Registers and counters are very simple yet powerful examples
of how you can use the basic memory elements to conduct
productive behavior. They are used everywhere in a
computer.

Finite State Machine
This is what we have been waiting for in this class. Using

bi i l d i l l i d i l

2CSE370, Lecture 14

combinational and sequential logics, now you can design a lot
of clever digital logic circuits for functional products. We will
learn different steps you take to go from word problems to
logic circuits in the next few lectures.

17

Registers

Group of storage elements read/written as a unit.
Store related values (e.g. a binary word)

Collection of flip-flops with common control
Share clock, reset, set lines

Example:
Storage registers
Shift registers
Counters

3CSE370, Lecture 1417

Storage registers

Basic storage registers uses flip flops

Example: 4 bit storage registerExample: 4 bit storage register

R S R S R S
D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

R S

"0"

4CSE370, Lecture 14

CLK

IN1 IN2 IN3 IN4

17

Shift registers

Hold successively sampled input values
Delays values in time
Example: 4-bit shift registerExample: 4-bit shift register

Stores 4 input values in sequence

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

5CSE370, Lecture 14

IN

CLK

17

Shift-register applications

Parallel-to-serial conversion for signal transmission

serial transmission

Pattern recognition (circuit recognizes 1001)

parallel inputs

parallel outputsserial transmission

CLK CLK

6CSE370, Lecture 14

D Q D Q D Q D QIN
CLK

OUT

17

Counters

Ring counter: Sequence is 1000, 0100, 0010, 0001
Assuming one of these patterns is the starting state

Johnson counter: Sequence is 1000, 1100, 1110,
1111 0111 0011 0001 0000

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

7CSE370, Lecture 14

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

1111, 0111, 0011, 0001, 0000

17

A binary counter

Has logic between flip-flops

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

D1 D2 D3 D4

8CSE370, Lecture 14

"1”

17

“States” for finite state machines are kept
in the storage elements

Combinational logic and storage elements
Localized feedback loops

Combinational
Logic

OutputsInputs

Choice of storage elements alters the logic

9CSE370, Lecture 14

Storage Elements

State OutputsState Inputs

17

Finite-state machines (FSMs)

States: Possible storage-element values

Transitions: Changes in state

010 111001

Transitions: Changes in state
Clock synchronizes the state changes

Sequential logic
Sequences through a series of states
Based on inputs and present state

10CSE370, Lecture 14

In = 0

In = 1

In = 0In = 1

100

010

110

111001

17

OUT1 OUT2 OUT3

Drawing state diagrams

Show input values
on transition arcs

100 1101

1 11 0 1

D Q D Q D QIN

CLK
Show output values
in state nodes

11CSE370, Lecture 14

111

011

101010000

001

0

1
11

1

0

00 0

00

17

Counters revisited

Great simple examples of state machines
Output is the counter’s state

010 011001

Next state is well defined
Does not depend on input (no inputs)

12CSE370, Lecture 14

100

110

000

101111

3-bit up-counter

17

FSM design procedure (using counters)

1. Draw a state diagram

2. Draw a state-transition table2. Draw a state transition table

3. Encode the next-state functions
Minimize the logic using k-maps

4. Implement the design

ll ‘ b ’ l

13CSE370, Lecture 14

We will use a ‘3-bit up counter’ as an example

17

1. Draw a state diagram

010

100

011001

000 3-bit up-counter

14CSE370, Lecture 14

110 101111

17

2. Draw a state-transition table

Like a truth-table
State encoding is easy for counters → Use count value

current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5

15CSE370, Lecture 14

5 101 110 6
6 110 111 7
7 111 000 0

17

3. Encode the next state functions

Assume D flip-flops
as state elements

1 1 1 1

C3N1

0 1 1 0

C3N2

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1

0 0 1 1
0 1 0 1

C2

C3

C1

N3

1 1 1 1
0 0 0 0

C2

C1
0 1 1 0
1 0 0 1

C2

C1

N1 := C1'

N2 := C1C2' + C1'C2
:= C1 xor C2

16CSE370, Lecture 14

1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

C2:= C1 xor C2

N3 := C1C2C3' + C1'C3 + C2'C3
:= C1C2C3' + (C1' + C2')C3
:= (C1C2) xor C3

17

4. Implement the design

3 flip-flops hold state
Counter is synchronously clocked

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

Minimized logic computes next state

17CSE370, Lecture 14

"1"

17

