
Lecture 15

Logistics
HW4 is due today
HW5 posted todayHW5 posted today
Exam questions: to me
Class feedback

Last lecture
Adders

Today
M Add ti i i (h d!)

1CSE370, Lecture 13

More on Adder timing issues (hard!)
Summary of Combinational Logic
Introduction to Sequential Logic

The basic concepts
An example

15

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0

Binary full adder

1-bit full adder
Computes sum, carry-out

Carry-in allows cascaded adders
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Carry in allows cascaded adders
Sum = Cin xor A xor B
Cout = ACin + BCin + AB

Cin
Sum

B
A

33

XOR
32

XOR

AND2

2CSE370, Lecture 13

A
B

Cin Cout
SumFull

Adder
A
B

Cin
A

Cout

Cin
B

13

AND2

12

AND2

14

OR3

11

1115

XOR

Problem: Ripple-carry delay

Carry propagation limits adder speed

0111 A
111

Cin
Sum

B
A

33

XOR
32

XOR

A

Cin
B

AND2 OR3

11

AND2

@0
@0

A0
B0

C0

S0 @2

A1
B1

C1 @2

S1 @3
C2 @4

@0
@2N

@0

@2N
@2N+1

Except when N=0

@2N+2

+ 0001 B

???? .0110010000001000

3CSE370, Lecture 13

A
B

Cin
A

Cout

13

AND2

12 14

Cout takes two gate delays
Cin arrives late

A2
B2

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

@0
@2N

@0
@0

@2N 2

1115

Speeding up the adder

Need to find a way to “predict” Cout for all bits

Without knowing what Cin is
0
0C t i l 0Without knowing what Cin is + 0

Predict Cout

Let’s try all cases:

A = 0, B = 0 but not sure of Cin

0
+ 1

Predict Cout

1
+ 0

Cout is always 0

Cout is 0 if Cin is 0
Cout is 1 if Cin is 1

Cout is 0 if Cin is 0
Cout is 1 if Cin is 1

Call this PROPAGATE

4CSE370, Lecture 131115

,

A = 0, B = 1 but not sure of Cin

A = 1, B = 0 but not sure of Cin

A = 1, B = 1 but not sure of Cin

Predict Cout
1

+ 1

Predict Cout

Cout is always 1
Call this GENERATE

Solution: Create a carry lookahead logic
Getting Pi an Gi

A
XOR Cin

B
11

AND2

Pi

Carry generate: Gi = AiBi for i-th bit
Generate Cout when A = B = 1

Cin
Sum

B
A

33

XOR
32

A
B

Cin
A

Cout

13

AND2

12

AND2

14

OR3

Gi

5CSE370, Lecture 1311

Carry propagate: Pi = Ai xor Bi for i-th bit
Propagate Cin to Cout when (A xor B) = 1

So, Cout = G + PCin Ci+1 = Gi + PiCi

15

A
XOR

One Solution: Carry lookahead logic

Get Pi (propagate) and Gi (generate)
C0

Pi @1
@0

Cin
Sum

B
A

33

XOR
32

A
Cout

Cin
B

AND2 OR3

11

AND2

A0
B0

S0 @2

A1
B1

C1 @2

S1 @3

A2

C2 @4

S2 @5

@1

P0
G0

P1
G1

P2

@2
@3

@3

@4

@4

6CSE370, Lecture 13

A
B

Cin
Cout

13

AND2

12 14
A2
B2

S2 @5

A3
B3

C3 @6

S3 @7
C4@8

15

Gi C2 = G1 + P1C1

C3 = G2 + P2C2

P2
G2

P3
G3

C4 = G3 + P3C3

= G1 + P1G0 + P1P0C0

= G2 + P2G1 + P2P1G0 + P2P1P0C0

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

C1 = G0 + P0C0

@3

@3

@4

@

We've finished combinational logic...

Negative numbers in binary
Truth tables
Basic logic gatesBasic logic gates
Schematic diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers
PLAs/PALs

7CSE370, Lecture 13

/
ROMs
Multi-level logics
Timing diagrams
Hazards
Adders

1115

We had no way to store memory:
When the input changed, the output changed

Next: Sequential logic can store memory…

Sequential Logic (next 5 weeks!)

We learn the details
Latches, flip-flops, registers (storage)
Shift registers counters (we can count now!)Shift registers, counters (we can count now!)
State machines (when we can store, we have states)
Moore and Mealy machines (types of state machines)
Timing and timing diagrams

timing more important than combinational logic
Synchronous and asynchronous inputs

Metastability (problem!)

8CSE370, Lecture 1315

The “WHY” slide

Learning sequential logic
Having the ability to hold memory is important. If you
couldn’t use your prior knowledge stored in the memory, you
wouldn’t be very smart (and same goes for a computer).

9CSE370, Lecture 1315

Sequential versus combinational

B

A C
B

clock

Apply fixed inputs A, B
When the clock ticks, the output becomes available

Observe C
Wait for another clock tick

Ob C i

10CSE370, Lecture 13

Observe C again

Combinational: C will stay the same
Sequential: C may be different

15

Sequential versus combinational

Combinational systems are memoryless
Outputs depend only on the present inputs

Sequential systems have memory
Outputs depend on the present and the previous inputs

Inputs OutputsSystem

11CSE370, Lecture 13

Inputs
OutputsSystem

Feedback
15

Synchronous sequential systems

Memory holds a system’s state
Changes in state occur at specific times
A periodic signal times or clocks the state changesA periodic signal times or clocks the state changes
The clock period is the time between state changes

B

A C

clock
State changes occur

at rising edge of clock

12CSE370, Lecture 13

period

duty cycle = pulsewidth/period
(here it is 50%)

pulsewidth

clock

15

Steady-state abstraction

Outputs retain their settled values
The clock period must be long enough for all voltages to
settle to a steady state before the next state changesettle to a steady state before the next state change

B

A C

clock Clock hides transient
behavior

13CSE370, Lecture 13

clock

C

Settled value

15

What did I just say about sequential logic?

Has clock
Synchronous = clocked
Exception: AsynchronousException: Asynchronous

Has state
State = memory

Employs feedback

Assumes steady-state signals
Signals are valid after they have settled

14CSE370, Lecture 13

Signals are valid after they have settled
State elements hold their settled output values

15

Example: A sequential system

Door combination lock
Enter three numbers in sequence and the door opens
When one number is entered press ‘enter’When one number is entered, press enter
If there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: Sequence of numbers, reset, enter
Outputs: Door open/close
Memory: Must remember the combination

15CSE370, Lecture 1315

We will go through the motion of designing a real system

We will teach details of “how” to do these steps
in the next few weeks

Understand the problem

Consider I/O and unknowns
How many bits per input?
How many inputs in sequence?How many inputs in sequence?
How do we know a new input is entered?
How do we represent the system states?

resetvaluenew

16CSE370, Lecture 13

open/closed

clock

15

Implement using sequential logic

Behavior
Clock tells us when to look at inputs

After inputs have settledAfter inputs have settled
Sequential: Enter sequence of numbers
Sequential: Remember if error occurred

A diagram may be helpful
Assume synchronous inputs
State sequence

Enter 3 numbers serially
b f d

resetvaluenew

17CSE370, Lecture 13

Remember if error occurred
All states have outputs

Lock open or closed

open/closed

clock

15

A diagram (called finite-state diagram)

States: 5
Each state has outputs

O t t / l d

Inputs: reset, new, results of
comparisons

Assume synchronous inputs
Outputs: open/closed

y p

C1!= value
& new C2!= value C3!= value

closed

ERR

We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

18CSE370, Lecture 13

closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

& new
& new & new

reset

not newnot newnot new

S1 S2 S3 OPEN

open

15

Separate data path and control

Data path
Stores combination
Compares inputs with

Control
Finite state-machine controller
Control for data pathCompares inputs with

combination
Control for data path
State changes clocked

resetnewC1 C2 C3

multiplexer

mux
control

4 4 4

19CSE370, Lecture 13

open/closed

comparatorvalue
equal

multiplexer

controller
clock

4

4

15

Refine diagram; generate state table

Refine state diagram to
include internal structure

closed

not equal
not equal

ERR

closed
mux=C1reset equal

& new

& new not equal
& new not equal

& new

not newnot newnot new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
next

20CSE370, Lecture 13

Generate
state table

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

15

Encode state table

State can be: S1, S2, S3, OPEN, or ERR
Need at least 3 bits to encode: 000, 001, 010, 011, 100
Can use 5 bits: 00001 00010 00100 01000 10000Can use 5 bits: 00001, 00010, 00100, 01000, 10000
Choose 4 bits: 0001, 0010, 0100, 1000, 0000

Output to mux can be: C1, C2, or C3
Need 2 or 3 bits to encode
Choose 3 bits: 001, 010, 100

Output open/closed can be: Open or closed
N d 1 2 bit t d

21CSE370, Lecture 13

Need 1 or 2 bits to encode
Choose 1 bit: 1, 0

15

Encode state table (con’t)

Good encoding choice!
Mux control is identical to last 3 state bits
Open/closed is identical to first state bit

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0

next

Open/closed is identical to first state bit
Output encoding ⇒ the outputs and state bits are the same

22CSE370, Lecture 13

0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

15

special circuit element,
called a register, for
storing inputs when

Implementing the controller

We will learn how to
design the controller
i th d d

resetnew equal

mux
control comb. logic

storing inputs when
told to by the clock

given the encoded
state-transition table

23CSE370, Lecture 13

open/closed

control
clockstate

15

C1i C2i C3i

mux

valuei

Designing the datapath

Four multiplexers
2-input ANDs and 3-input OR

Four single-bit comparators

C1 C2 C3
mux4 4 4

mux
control

Four single bit comparators
2-input XNORs

4-input AND

24CSE370, Lecture 13

comparator equal

multiplexer

mux
control

4

4

4
value equal

15

Where did we use memory?

Memory: Stored combination, state (errors or
successes in past inputs)

resetnew

C1 C2 C3

comparator

value

multiplexer

equal

controller
mux
control

clock

25CSE370, Lecture 13

open/closed

comparator

equal

15

Where did we use feedback?

Feedback: Comparator output ("equal" signal)

resetnew

C1 C2 C3

comparator

value

multiplexer

equal

controller
mux
control

clock

26CSE370, Lecture 13

open/closedequal

15

Where did we use clock?

Clock synchronizes the inputs
Accept inputs when clock goes high

Controller is clocked
Mux-control and open/closed signals change on the clock edge

resetnew

C1 C2 C3
value

lti l

equal

mux

27CSE370, Lecture 13

open/closed

comparator

equal

multiplexer controllercontrol
clock

15

