
Lecture 15

Logistics
HW4 is due today
HW5 posted todayHW5 posted today
Exam questions: to me
Class feedback  

Last lecture
Adders 

Today
M Add ti i i (h d!)
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More on Adder timing issues (hard!)
Summary of Combinational Logic
Introduction to Sequential Logic

The basic concepts
An example

15

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0

Binary full adder

1-bit full adder
Computes sum, carry-out

Carry-in allows cascaded adders
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Carry in allows cascaded adders
Sum = Cin xor A xor B
Cout = ACin + BCin + AB

Cin
Sum

B
A

33

XOR
32

XOR

AND2
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XOR

Problem: Ripple-carry delay

Carry propagation limits adder speed

0111  A
111

Cin
Sum
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AND2 OR3
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AND2
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C1 @2

S1 @3
C2 @4
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@2N
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Except when N=0

@2N+2
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3CSE370, Lecture 13

A
B

Cin
A

Cout

13

AND2

12 14

Cout takes two gate delays
Cin arrives late

A2
B2

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

@0
@2N

@0
@0

@2N 2
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Speeding up the adder 

Need to find a way to “predict” Cout for all bits

Without knowing what Cin is
0
0C t i l 0Without knowing what Cin is +  0

--------
Predict Cout

Let’s try all cases:

A = 0, B = 0 but not sure of Cin

0
+  1

--------
Predict Cout

1
+  0

--------

Cout is always 0

Cout is 0 if Cin is 0
Cout is 1 if Cin is 1

Cout is 0 if Cin is 0
Cout is 1 if Cin is 1

Call this PROPAGATE
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,

A = 0, B = 1 but not sure of Cin

A = 1, B = 0 but not sure of Cin

A = 1, B = 1 but not sure of Cin

Predict Cout
1

+  1
--------

Predict Cout

Cout is always 1
Call this GENERATE



Solution: Create a carry lookahead logic
Getting Pi an Gi

A
XOR Cin

B
11

AND2

Pi

Carry generate: Gi = AiBi for i-th bit
Generate Cout when A = B = 1

Cin
Sum

B
A

33

XOR
32

A
B

Cin
A

Cout

13

AND2

12

AND2

14

OR3

Gi
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Carry propagate: Pi = Ai xor Bi for i-th bit
Propagate Cin to Cout when (A xor B) = 1

So, Cout = G + PCin Ci+1 = Gi + PiCi

15

A
XOR

One Solution: Carry lookahead logic

Get Pi (propagate) and Gi (generate)
C0

Pi @1
@0

Cin
Sum

B
A

33

XOR
32

A
Cout

Cin
B

AND2 OR3
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AND2

A0
B0

S0 @2

A1
B1

C1 @2

S1 @3

A2

C2 @4

S2 @5

@1

P0
G0

P1
G1

P2

@2
@3

@3

@4

@4
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A
B

Cin
Cout
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AND2

12 14
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B2

S2 @5

A3
B3

C3 @6

S3 @7
C4@8
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Gi C2 = G1 + P1C1 

C3 = G2 + P2C2

P2
G2

P3
G3

C4 = G3 + P3C3

= G1 + P1G0 + P1P0C0

= G2 + P2G1 + P2P1G0 + P2P1P0C0

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

C1 = G0 + P0C0

@3

@3

@4

@



We've finished combinational logic...

Negative numbers in binary
Truth tables
Basic logic gatesBasic logic gates
Schematic diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers
PLAs/PALs
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/
ROMs
Multi-level logics
Timing diagrams
Hazards
Adders

1115

We had no way to store memory:
When the input changed, the output changed

Next: Sequential logic can store memory…

Sequential Logic (next 5 weeks!)

We learn the details
Latches, flip-flops, registers (storage)
Shift registers counters (we can count now!)Shift registers, counters (we can count now!)
State machines (when we can store, we have states)
Moore and Mealy machines (types of state machines)
Timing and timing diagrams 

timing more important than combinational logic
Synchronous and asynchronous inputs

Metastability (problem!)

8CSE370, Lecture 1315



The “WHY” slide

Learning sequential logic
Having the ability to hold memory is important.  If you 
couldn’t use your prior knowledge stored in the memory, you 
wouldn’t be very smart (and same goes for a computer).
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Sequential versus combinational

B

A C
B

clock

Apply fixed inputs A, B
When the clock ticks, the output becomes available

Observe C
Wait for another clock tick

Ob C i
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Observe C again

Combinational: C will stay the same
Sequential: C may be different

15



Sequential versus combinational

Combinational systems are memoryless
Outputs depend only on the present inputs 

Sequential systems have memory
Outputs depend on the present and the previous inputs

Inputs OutputsSystem
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Inputs
OutputsSystem

Feedback
15

Synchronous sequential systems

Memory holds a system’s state
Changes in state occur at specific times
A periodic signal times or clocks the state changesA periodic signal times or clocks the state changes 
The clock period is the time between state changes

B

A C

clock
State changes occur 

at rising edge of clock
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period

duty cycle = pulsewidth/period 
(here it is 50%)

pulsewidth

clock

15



Steady-state abstraction

Outputs retain their settled values
The clock period must be long enough for all voltages to 
settle to a steady state before the next state changesettle to a steady state before the next state change

B

A C

clock Clock hides transient 
behavior
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clock

C

Settled value

15

What did I just say about sequential logic?

Has clock
Synchronous = clocked
Exception: AsynchronousException: Asynchronous

Has state
State = memory

Employs feedback

Assumes steady-state signals
Signals are valid after they have settled
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Signals are valid after they have settled
State elements hold their settled output values

15



Example: A sequential system

Door combination lock
Enter three numbers in sequence and the door opens
When one number is entered press ‘enter’When one number is entered, press enter
If there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: Sequence of numbers, reset, enter
Outputs: Door open/close
Memory: Must remember the combination
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We will go through the motion of designing a real system

We will teach details of “how” to do these steps 
in the next few weeks

Understand the problem

Consider I/O and unknowns
How many bits per input?
How many inputs in sequence?How many inputs in sequence?
How do we know a new input is entered?
How do we represent the system states?

resetvaluenew
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open/closed

clock

15



Implement using sequential logic

Behavior
Clock tells us when to look at inputs

After inputs have settledAfter inputs have settled
Sequential: Enter sequence of numbers
Sequential: Remember if error occurred

A diagram may be helpful
Assume synchronous inputs
State sequence

Enter 3 numbers serially
b f d

resetvaluenew
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Remember if error occurred
All states have outputs

Lock open or closed

open/closed

clock

15

A diagram (called finite-state diagram)

States: 5
Each state has outputs

O t t / l d

Inputs: reset, new, results of 
comparisons

Assume synchronous inputs
Outputs: open/closed

y p

C1!= value
& new C2!= value C3!= value

closed

ERR

We use state diagrams to 
represent sequential logic

System transitions between 
finite numbers of states
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closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

& new
& new & new

reset

not newnot newnot new

S1 S2 S3 OPEN

open

15



Separate data path and control

Data path
Stores combination
Compares inputs with

Control
Finite state-machine controller
Control for data pathCompares inputs with 

combination
Control for data path
State changes clocked

resetnewC1 C2 C3

multiplexer

mux 
control

4 4 4
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open/closed

comparatorvalue
equal

multiplexer

controller
clock

4

4

15

Refine diagram; generate state table

Refine state diagram to 
include internal structure

closed

not equal
not equal

ERR

closed
mux=C1reset equal

& new

& new not equal
& new not equal

& new

not newnot newnot new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
next
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Generate 
state table

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

15



Encode state table

State can be: S1, S2, S3, OPEN, or ERR
Need at least 3 bits to encode: 000, 001, 010, 011, 100
Can use 5 bits: 00001 00010 00100 01000 10000Can use 5 bits: 00001, 00010, 00100, 01000, 10000
Choose 4 bits: 0001, 0010, 0100, 1000, 0000

Output to mux can be: C1, C2, or C3
Need 2 or 3 bits to encode
Choose 3 bits: 001, 010, 100

Output open/closed can be: Open or closed
N d 1 2 bit t d

21CSE370, Lecture 13

Need 1 or 2 bits to encode
Choose 1 bit: 1, 0

15

Encode state table (con’t)

Good encoding choice!
Mux control is identical to last 3 state bits
Open/closed is identical to first state bit

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0

next

Open/closed is identical to first state bit
Output encoding ⇒ the outputs and state bits are the same
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0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

15



special circuit element, 
called a register, for 
storing inputs when

Implementing the controller

We will learn how to 
design the controller 
i th d d

resetnew equal

mux 
control comb. logic

storing inputs when 
told to by the clock

given the encoded 
state-transition table
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open/closed

control
clockstate

15

C1i C2i C3i

mux

valuei

Designing the datapath

Four multiplexers 
2-input ANDs and 3-input OR

Four single-bit comparators

C1 C2 C3
mux4 4 4

mux 
control

Four single bit comparators 
2-input XNORs 

4-input AND
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comparator equal

multiplexer

mux 
control

4

4

4
value equal

15



Where did we use memory?

Memory: Stored combination, state (errors or 
successes in past inputs)

resetnew

C1 C2 C3

comparator

value

multiplexer

equal

controller
mux 
control

clock
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open/closed

comparator

equal

15

Where did we use feedback?

Feedback: Comparator output ("equal" signal)

resetnew

C1 C2 C3

comparator

value

multiplexer

equal

controller
mux 
control

clock

26CSE370, Lecture 13

open/closedequal

15



Where did we use clock?

Clock synchronizes the inputs
Accept inputs when clock goes high

Controller is clocked
Mux-control and open/closed signals change on the clock edge

resetnew

C1 C2 C3
value

lti l

equal

mux 
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open/closed

comparator

equal

multiplexer controllercontrol
clock
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