Lecture 26

O Logistics
= Ant extra credit problem due today
= Extra lab check-off times
< Monday 12:30-4:20
< Tuesday 12:00-2:00
= All labs must be done by Tuesday 2:00pm
= Review session Monday 4:30 pm here
= Final Exam Wednesday 2:30 pm here

0 Today
= Computer Organization Overview
< Where some of the things we've learned fit in
= Review
= Evaluation: leave last 10-15 min for this

CSE370, Lecture 26

Structure of a computer

0 Block diagram view

address
Processor /_readfwrite Memory
System

central processing data
unit (CPU)

control signals

instruction unit
— instruction fetch and execution unit
interpretation FSM — functional units

CSE370, Lecture 26 and registers ,

Registers

O Selectively loaded — EN or LD input
0 Output enable — OE input
O Multiple registers — group 4 or 8 in parallel

OE asserted causes FF state to be
connected to output pins; otherwise they
are left unconnected (high impedance)

LD asserted during a lo-to-hi clock
transition loads new data into FFs

CSE370, Lecture 26

Instruction sequencing

0 Example - an instruction to add the contents of two registers (Rx
and Ry) and place result in a third register (Rz)

0 Step 1: get the ADD instruction from memory into an instruction
register (IR)

0 Step 2: decode instruction
= instruction in IR has the code of an ADD instruction
= register indices used to generate output enables for registers Rx and
Ry
= register index used to generate load signal for register Rz
0 Step 3: execute instruction
= enable Rx and Ry output and direct to ALU
= setup ALU to perform ADD operation
= direct result to Rz so that it can be loaded into register

CSE370, Lecture 26 4

Instruction types

0 Data manipulation
= add, subtract
= increment, decrement
= multiply
= shift, rotate
= immediate operands

0 Data staging
= load/store data to/from memory
= register-to-register move

0 Control
= conditional/unconditional branches in program flow
= subroutine call and return

CSE370, Lecture 26

Elements of the control unit (aka instruction
unit)

0 Standard FSM elements
= state register
next-state logic
output logic (datapath/control signalling)
Moore or synchronous Mealy machine to avoid loops unbroken by FF

0 Plus additional "control" registers
= instruction register (IR)
= program counter (PC)

0 Inputs/outputs
= outputs control elements of data path
= inputs from data path used to alter flow of program (test if zero)

CSE370, Lecture 26 6

Instruction execution

0 Control state diagram (for each diagram)
= reset eset
= fetch instruction
= decode
» execute Initialize

0 Instructions partitioned into three classes Machine
= branch
= load/store
= register-to-register

0 Different sequence through
diagram for each >
instruction type @

Register-
to-Register

Branch Branch'

Taken Not Taken

CSE370, Lecture 26

Data path (hierarchy)

0 Arithmetic circuits constructed in hierarchical and iterative fashion
= each bit in datapath is functionally identical

« 4-bit, 8-bit, 16-bit, 32-bit , 64-bit datapaths Ci”
Q:rr: FA Sum
Cout
Ain Sum
HA

Bin =
| Ha ‘*D Cout

CSE370, Lecture 26 8

Data path (ALU)

O ALU block diagram
= input: data and operation to perform
= output: result of operation and status information

Operation

CSE370, Lecture 26 9

Data path (ALU + registers)

O Accumulator
= special register
= one of the inputs to ALU
= output of ALU stored back in accumulator

O One-address instructions
= operation and address of one operand
= other operand and destination 16
is accumulator register !
= AC — AC op Mem[addr] REG
= "single address instructions” 16 16
(AC implicit operand))f

O Multiple registers —_—
= part of instruction used
to choose register operands N

CSE370, Lecture 26 10

Data path (bit-slice)

O Bit-slice concept — iterate to build n-bit wide datapaths

T Cl

memory

memory

1 bit wide 2 bits wide

CSE370, Lecture 26 11

Instruction path

O Program counter
= keeps track of program execution
= address of next instruction to read from memory
= may have auto-increment feature or use ALU

0 Instruction register
= current instruction
= includes ALU operation and address of operand
= also holds target of jump instruction
= immediate operands

0 Relationship to data path
= PC may be incremented through ALU
= contents of IR may also be required as input to ALU

CSE370, Lecture 26 12

Data path (memory interface)

0 Memory
= separate data and instruction memory (Harvard architecture)
< two address busses, two data busses
= single combined memory (Princeton architecture)
< single address bus, single data bus

O Separate memory
= ALU output goes to data memory input
= register input from data memory output
= data memory address from instruction register
= instruction register from instruction memory output
= instruction memory address from program counter

0 Single memory
= address from PC or IR
= memory output to instruction and data registers
= memory input from ALU output

CSE370, Lecture 26 13

Block diagram of processor

0 Register transfer view of Princeton architecture

which register outputs are connected to which register inputs

arrows represent data-flow, other are control signals from control FSM
MAR may be a simple multiplexer rather than separate register

MBR is split in two (REG and IR)
load control for each register

ata Memo
16-bit words)
addr

Control MAR
FSM

CSE370, Lecture 26 14

Block diagram of processor

0 Register transfer view of Harvard architecture
which register outputs are connected to which register inputs

.
= arrows represent data-flow, other are control signals from control FSM
= two MARs (PC and IR) load
= two MBRs (REG and IR) 16 ﬁpa
= load control for each register REG r} iv -
6 |store t:
“ -
0P 16-bit word:
N 16 addr
z
Control 16
FSM !
{—|data
nst Memor
f30 'i/ 1 8-bit wordg)
QPN addr
16
CSE370, Lecture 26 15

“Why" take CSE 370

O Required (okay, but let’s talk about why it is required and will be
useful for your future)

0 Most basic building blocks of computer science (0’s and 1's)

0 It is important to understand how they are used as baseline for
more complex operations (adding, storing, other logic like
if/while)

0 It is good to understand what can be implemented in hardware,
and why it is sometimes good to implement certain things in
hardware instead of software

0 Understand how some of the technology you interact with on
daily basis (memory stick, vending machine, etc) at the hardware
logic level.

0 Knowledge gained in this course is used directly in
industry/research

CSE370, Lecture 26 16

What you should know

0 Combinational logic basics

Binary/hex/decimal numbers

Ones and twos complement arithmetic

Truth tables

Boolean algebra

Basic logic gates 1 like Pink and Blue but not
Schematic diagrams

Timing diagrams

de Morgan's theorem

AND/OR to NAND/NOR logic conversion

K-maps (up to 4 variables), logic minimization, don't cares
SOP, POS

Minterm and maxterm expansions (canonical, minimized)

CSE370, Lecture 26 17

What you should know

0 Combinational logic applications
= Combinational design
< Input/output encoding
< Truth table
< K-map
< Boolean equation
% Schematics
= Multiplexers/demultiplexers
= PLAs/PALs
= ROMs
= Adders

CSE370, Lecture 26 18

What you should know

0 Sequential logic building blocks
Latches (R-S and D)
Flip-flops (D and T)

.

= Latch and flip-flop timing (setup/hold time, prop delay)

= Timing diagrams

= Asynchronous inputs and metastability

= Registers

Remember that
the last number was 1

CSE370, Lecture 26 19

What you should know

0 Counters
Timing diagrams
Shift registers
Ring counters
State diagrams and state-transition tables
Counter design procedure
1. Draw a state diagram
2. Draw a state-transition table
3. Encode the next-state functions
4. Implement the design
Self-starting counters

L,234..

CSE370, Lecture 26 20

What you should know (Final exam focus is
here though exam is cumulative)

O Finite state machines
= Timing diagrams (synchronous FSMs)
= Moore versus Mealy versus synchronized/registered Mealy
= FSM design procedure

The last coin was 5cents and

1. State diagram already had 10cents deposited
50'let’s pop out a coffee

2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design
= State minimization
= One-hot / output-oriented encoding
= State partitioning
= FSM design guidelines
< Separate datapath and control

CSE370, Lecture 26 21

What you should know (Final exam focus is
here though exam is cumulative)

0 Finite state machines and Verilog
= Understanding simple Verilog
= Expressing Moore and Mealy machines in sequential Verilog
= Understanding Verilog descriptions of finite state machines
expressed in standard stylized formats

0 Other
= Pipelining and Retiming

CSE370, Lecture 26 2

Final exam logistics

0 2:30 —4:20 (1 hour and 45 minutes long)

O Materials: cumulative but more focus on later material
HW?7, HW8.

0 Closed book/notes, no calculator

0 Scratch papers provided

0 Just have your pencil/pen and eraser

0 Raise hand for questions (don't walk to get help)

CSE370, Lecture 26 23

Thank you

Thank you for making teaching this course fun
I hope you enjoyed the course

Send me an email or drop in for questions about CSE, etc.

Good luck on your final exams!

CSE370, Lecture 26 24

