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Lecture 25

◆ Logistics 
■ HW8 due today

■ Ant extra credit due Friday

■ Final exam, Wednesday March 18, 2:30-4:20 pm here
� Review session Monday, March 16, 4:30 pm, here

◆ Last lecture
■ Encoding & Partitioning examples

◆ Today
■ Pipelining & Retiming

■ Control vs Datapath in a simple computer design
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Other sequential logic optimization techniques

◆ Pipelining --- allows faster clock speed

◆ Retiming --- can reduce registers or change delays
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Pipelining related definitions

◆ Latency: Time to perform a computation
■ Data input to data output

◆ Throughput: Input or output data rate
■ Typically the clock rate

◆ Combinational delays drive performance
■ Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output

■ Latency ∝ n * d   (in sec)

■ Throughput ∝ 1/d   (in Hz)
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Pipelining

◆ What?
■ Subdivide combinational logic

■ Add registers between logic

◆ Why?
■ Trade latency for throughput

■ Increased throughput 
� Reduce logic delays

� Increase clock speed

■ Increased latency
� Takes cycles to fill the pipe

■ Increase circuit utilization
� Simultaneous computations

Logic      Reg

Logic   Reg Logic   Reg
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Pipelining

◆ When?
■ Need throughput more than latency

� Signal processing

■ Logic delays > setup/hold times

■ Acyclic logic

◆ Where?
■ At natural breaks in the 

combinational logic

■ Adding registers makes sense

Reg Logic  Reg
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Pipelining example
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Pipelining and clock skew

◆ Which is faster?

◆ Which is safer?
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Retiming

◆ Pipelining adds registers
■ To increase the clock speed

◆ Retiming moves registers around
■ Reschedules computations to optimize performance

� Minimize critical path

� Optimize logic across register boundaries

� Reduce register count

■ Without altering functionality
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Retiming in a nutshell

◆ Change position of FFs
■ For speed

■ To suit implementation target

◆ Retiming modifies state 
assignment

■ Preserves FSM functionality
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Retiming ground rules

◆ Rules:
■ Remove one register from each input and add 

one to each output

■ Remove one register from each output and add 

one to each input

Combinational logic

Register
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Retiming examples

◆ Reduce register count

◆ Change output delays
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Optimal pipelining

■ Add registers

■ Use retiming to optimize location
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Example: Digital correlator

◆ yt = δ(xt, a0) + δ(xt–1, a1) + δ(xt–2, a2) + δ(xt–3, a3)

■ δ is a comparator:  δ(x, a) = 1 if x = a; 0 otherwise

■ yt is the number of matches between input and pattern a0a1a2a3

Input

Output
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Original design
cycle time = 24

Retimed design
cycle time = 13

Example: Digital correlator (cont’d)

◆ Delays: Comparator = 3; adder = 7
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"puppeteer who pulls the strings"
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Data-path and control

◆ Digital hardware systems = data-path + control

■ datapath: registers, counters, combinational functional units (e.g., 

ALU), communication (e.g., busses)

■ control: FSM generating sequences of control signals that instructs

datapath what to do next
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Tri-state gates

◆ The third value
■ logic values: “0”, “1”

■ don't care: “X” (must be 0 or 1 in real circuit!)

■ third value or state: “Z” — high impedance, infinite R, no connection

◆ Tri-state gates
■ additional input – output enable (OE)

■ output values are 0, 1, and Z

■ when OE is high, the gate functions normally

■ when OE is low, the gate is disconnected from wire at output

■ allows more than one gate to be connected to the same output wire
� as long as only one has its output enabled at any one time (otherwise, 

sparks could fly)

In Out

OE
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when Select is high
Input1 is connected to F

when Select is low
Input0 is connected to F

this is essentially a 2:1 mux

OE

OE

FInput0

Input1

Select

Tri-state and multiplexing

◆ When using tri-state logic

■ (1) make sure never more than one "driver" for a wire at any one

time 

(pulling high and low at the same time can severely damage circuits)

■ (2) make sure to only use value on wire when its being driven (using 

a 

floating value may cause failures)

◆ Using tri-state gates to implement an economical multiplexer
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open-collector 

NAND gates

with ouputs wired together

using "wired-AND"

to form (AB)'(CD)'

Open-collector gates and wired-AND

◆ Open collector: another way to connect gate outputs to the same wire
■ gate only has the ability to pull its output low
■ it cannot actively drive the wire high (default – pulled high through resistor)

◆ Wired-AND can be implemented with open collector logic
■ if A and B are "1", output is actively pulled low
■ if C and D are "1", output is actively pulled low
■ if one gate output is low and the other high, then low wins
■ if both gate outputs are "1", the wire value "floats", pulled high by resistor

� low to high transition usually slower than it would have been with a gate pulling high

■ hence, the two NAND functions are ANDed together



19CSE370, Lecture 25

central processing 
unit (CPU)

instruction unit
– instruction fetch and 
interpretation FSM

execution unit
– functional units
and registers

address

read/write

data

Processor Memory
System

Structure of a computer

◆ Block diagram view

control signals

data conditions

Data PathControl
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LD asserted during a lo-to-hi clock 
transition loads new data into FFs

OE asserted causes FF state to be 
connected to output pins; otherwise they 

are left unconnected (high impedance)

OE

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

LD

D7
D6
D5
D4
D3
D2
D1
D0 CLK

Registers

◆ Selectively loaded – EN or LD input

◆ Output enable – OE input

◆ Multiple registers – group 4 or 8 in parallel
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Register files

◆ Collections of registers in one package
■ two-dimensional array of FFs

■ address used as index to a particular word

■ can have separate read and write addresses so can do both at 

same time

◆ 4 by 4 register file
■ 16 D-FFs

■ organized as four words of four bits each

■ write-enable (load)

■ read-enable (output enable)
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Memories

◆ Larger collections of storage elements
■ implemented not as FFs but as much more efficient latches 
■ high-density memories use 1 to 5 switches (transitors) per memory 

bit

◆ Static RAM – 1024 words each 4 bits wide
■ once written, memory holds forever (not true for denser dynamic 

RAM)
■ address lines to select word 

� (10 lines for 1024 words)

■ read enable
� same as output enable
� often called chip select
� permits connection of many

chips into larger array

■ write enable (same as load enable)
■ bi-directional data lines

� output when reading, input when writing

23CSE370, Lecture 25

Instruction sequencing

◆ Example – an instruction to add the contents of two registers (Rx 
and Ry) and place result in a third register (Rz)

◆ Step 1: get the ADD instruction from memory into an instruction 
register (IR)

◆ Step 2: decode instruction
■ instruction in IR has the code of an ADD instruction

■ register indices used to generate output enables for registers Rx and 

Ry

■ register index used to generate load signal for register Rz

◆ Step 3: execute instruction
■ enable Rx and Ry output and direct to ALU

■ setup ALU to perform ADD operation

■ direct result to Rz so that it can be loaded into register
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Instruction types

◆ Data manipulation
■ add, subtract

■ increment, decrement

■ multiply

■ shift, rotate

■ immediate operands

◆ Data staging
■ load/store data to/from memory

■ register-to-register move

◆ Control
■ conditional/unconditional branches in program flow

■ subroutine call and return
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Elements of the control unit (aka instruction 
unit)

◆ Standard FSM elements
■ state register

■ next-state logic

■ output logic (datapath/control signalling)

■ Moore or synchronous Mealy machine to avoid loops unbroken by FF

◆ Plus additional "control" registers
■ instruction register (IR)

■ program counter (PC)

◆ Inputs/outputs
■ outputs control elements of data path

■ inputs from data path used to alter flow of program (test if zero)
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Reset

Initialize
Machine

Register-
to-Register

Branch
Not Taken

Branch 
Taken

Instruction execution

◆ Control state diagram (for each diagram)
■ reset

■ fetch instruction

■ decode

■ execute

◆ Instructions partitioned into three classes
■ branch

■ load/store

■ register-to-register

◆ Different sequence through
diagram for each
instruction type

Init

Fetch
Instr.

XEQ
Instr.

Load/
StoreBranch

Incr.
PC

27CSE370, Lecture 25

Cin

Ain
Bin

Sum

Cout

FA

HA
Ain

Bin

Sum

Cin

Cout
HA

Data path (hierarchy)

◆ Arithmetic circuits constructed in hierarchical and iterative fashion
■ each bit in datapath is functionally identical

■ 4-bit, 8-bit, 16-bit, 32-bit , 32-bit datapaths
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Operation

16

Data path (ALU)

◆ ALU block diagram
■ input: data and operation to perform

■ output: result of operation and status information
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Data path (ALU + registers)

◆ Accumulator
■ special register
■ one of the inputs to ALU
■ output of ALU stored back in accumulator

◆ One-address instructions
■ operation and address of one operand
■ other operand and destination

is accumulator register
■ AC ← AC op Mem[addr]
■ "single address instructions”

(AC implicit operand)

◆ Multiple registers
■ part of instruction used

to choose register operands
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2 bits wide1 bit wide

Data path (bit-slice)

◆ Bit-slice concept – iterate to build n-bit wide datapaths
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Instruction path

◆ Program counter
■ keeps track of program execution

■ address of next instruction to read from memory

■ may have auto-increment feature or use ALU

◆ Instruction register
■ current instruction

■ includes ALU operation and address of operand

■ also holds target of jump instruction

■ immediate operands

◆ Relationship to data path
■ PC may be incremented through ALU

■ contents of IR may also be required as input to ALU
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Data path (memory interface)

◆ Memory
■ separate data and instruction memory (Harvard architecture)

� two address busses, two data busses
■ single combined memory (Princeton architecture)

� single address bus, single data bus

◆ Separate memory
■ ALU output goes to data memory input
■ register input from data memory output
■ data memory address from instruction register
■ instruction register from instruction memory output
■ instruction memory address from program counter

◆ Single memory
■ address from PC or IR
■ memory output to instruction and data registers
■ memory input from ALU output
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Block diagram of processor

◆ Register transfer view of Princeton architecture
■ which register outputs are connected to which register inputs

■ arrows represent data-flow, other are control signals from control FSM

■ MAR may be a simple multiplexer rather than separate register

■ MBR is split in two (REG and IR)

■ load control for each register
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Block diagram of processor

◆ Register transfer view of Harvard architecture
■ which register outputs are connected to which register inputs

■ arrows represent data-flow, other are control signals from control FSM

■ two MARs (PC and IR)

■ two MBRs (REG and IR)

■ load control for each register


