
1CSE370, Lecture 25

Lecture 25

◆ Logistics
■ HW8 due today

■ Ant extra credit due Friday

■ Final exam, Wednesday March 18, 2:30-4:20 pm here
� Review session Monday, March 16, 4:30 pm, here

◆ Last lecture
■ Encoding & Partitioning examples

◆ Today
■ Pipelining & Retiming

■ Control vs Datapath in a simple computer design

2CSE370, Lecture 25

Other sequential logic optimization techniques

◆ Pipelining --- allows faster clock speed

◆ Retiming --- can reduce registers or change delays

3CSE370, Lecture 25

Pipelining related definitions

◆ Latency: Time to perform a computation
■ Data input to data output

◆ Throughput: Input or output data rate
■ Typically the clock rate

◆ Combinational delays drive performance
■ Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output

■ Latency ∝ n * d (in sec)

■ Throughput ∝ 1/d (in Hz)

4CSE370, Lecture 25

Pipelining

◆ What?
■ Subdivide combinational logic

■ Add registers between logic

◆ Why?
■ Trade latency for throughput

■ Increased throughput
� Reduce logic delays

� Increase clock speed

■ Increased latency
� Takes cycles to fill the pipe

■ Increase circuit utilization
� Simultaneous computations

Logic Reg

Logic Reg Logic Reg

5CSE370, Lecture 25

Pipelining

◆ When?
■ Need throughput more than latency

� Signal processing

■ Logic delays > setup/hold times

■ Acyclic logic

◆ Where?
■ At natural breaks in the

combinational logic

■ Adding registers makes sense

Reg Logic Reg

6CSE370, Lecture 25

Pipelining example

7CSE370, Lecture 25

Pipelining and clock skew

◆ Which is faster?

◆ Which is safer?

8CSE370, Lecture 25

Retiming

◆ Pipelining adds registers
■ To increase the clock speed

◆ Retiming moves registers around
■ Reschedules computations to optimize performance

� Minimize critical path

� Optimize logic across register boundaries

� Reduce register count

■ Without altering functionality

9CSE370, Lecture 25

Retiming in a nutshell

◆ Change position of FFs
■ For speed

■ To suit implementation target

◆ Retiming modifies state
assignment

■ Preserves FSM functionality

b

a

?

a

a

b

b

a

b

×

10CSE370, Lecture 25

Retiming ground rules

◆ Rules:
■ Remove one register from each input and add

one to each output

■ Remove one register from each output and add

one to each input

Combinational logic

Register

11CSE370, Lecture 25

Retiming examples

◆ Reduce register count

◆ Change output delays

a
b d

xD Q
a

b d
x

D Q

D Q

12CSE370, Lecture 25

Optimal pipelining

■ Add registers

■ Use retiming to optimize location

871310

56

871310

56

Input

Input

Output

Output

Added registers

for pipelining

13CSE370, Lecture 25

++

δδ

+

δ δ

yt

xt

a0 a1 a2 a3

Example: Digital correlator

◆ yt = δ(xt, a0) + δ(xt–1, a1) + δ(xt–2, a2) + δ(xt–3, a3)

■ δ is a comparator: δ(x, a) = 1 if x = a; 0 otherwise

■ yt is the number of matches between input and pattern a0a1a2a3

Input

Output

14CSE370, Lecture 25

++

δδ

+

δ δ

Original design
cycle time = 24

Retimed design
cycle time = 13

Example: Digital correlator (cont’d)

◆ Delays: Comparator = 3; adder = 7

Input

Output

++

δδ

+

δ δInput

Output

a0 a1
a2 a3

a0 a1
a2 a3

15CSE370, Lecture 25

"puppet"

"puppeteer who pulls the strings"
control

data-path

status
info and

inputs

control
signal

outputs
state

Data-path and control

◆ Digital hardware systems = data-path + control

■ datapath: registers, counters, combinational functional units (e.g.,

ALU), communication (e.g., busses)

■ control: FSM generating sequences of control signals that instructs

datapath what to do next

16CSE370, Lecture 25

In OE Out

X 0 Z

0 1 0

1 1 1

non-inverting

tri-state

buffer

100

In

OE

Out

Tri-state gates

◆ The third value
■ logic values: “0”, “1”

■ don't care: “X” (must be 0 or 1 in real circuit!)

■ third value or state: “Z” — high impedance, infinite R, no connection

◆ Tri-state gates
■ additional input – output enable (OE)

■ output values are 0, 1, and Z

■ when OE is high, the gate functions normally

■ when OE is low, the gate is disconnected from wire at output

■ allows more than one gate to be connected to the same output wire
� as long as only one has its output enabled at any one time (otherwise,

sparks could fly)

In Out

OE

17CSE370, Lecture 25

when Select is high
Input1 is connected to F

when Select is low
Input0 is connected to F

this is essentially a 2:1 mux

OE

OE

FInput0

Input1

Select

Tri-state and multiplexing

◆ When using tri-state logic

■ (1) make sure never more than one "driver" for a wire at any one

time

(pulling high and low at the same time can severely damage circuits)

■ (2) make sure to only use value on wire when its being driven (using

a

floating value may cause failures)

◆ Using tri-state gates to implement an economical multiplexer

18CSE370, Lecture 25

open-collector

NAND gates

with ouputs wired together

using "wired-AND"

to form (AB)'(CD)'

Open-collector gates and wired-AND

◆ Open collector: another way to connect gate outputs to the same wire
■ gate only has the ability to pull its output low
■ it cannot actively drive the wire high (default – pulled high through resistor)

◆ Wired-AND can be implemented with open collector logic
■ if A and B are "1", output is actively pulled low
■ if C and D are "1", output is actively pulled low
■ if one gate output is low and the other high, then low wins
■ if both gate outputs are "1", the wire value "floats", pulled high by resistor

� low to high transition usually slower than it would have been with a gate pulling high

■ hence, the two NAND functions are ANDed together

19CSE370, Lecture 25

central processing
unit (CPU)

instruction unit
– instruction fetch and
interpretation FSM

execution unit
– functional units
and registers

address

read/write

data

Processor Memory
System

Structure of a computer

◆ Block diagram view

control signals

data conditions

Data PathControl

20CSE370, Lecture 25

LD asserted during a lo-to-hi clock
transition loads new data into FFs

OE asserted causes FF state to be
connected to output pins; otherwise they

are left unconnected (high impedance)

OE

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

LD

D7
D6
D5
D4
D3
D2
D1
D0 CLK

Registers

◆ Selectively loaded – EN or LD input

◆ Output enable – OE input

◆ Multiple registers – group 4 or 8 in parallel

21CSE370, Lecture 25

RE
RB
RA

WE
WB
WA

D3
D2
D1
D0

Q3
Q2
Q1
Q0

Register files

◆ Collections of registers in one package
■ two-dimensional array of FFs

■ address used as index to a particular word

■ can have separate read and write addresses so can do both at

same time

◆ 4 by 4 register file
■ 16 D-FFs

■ organized as four words of four bits each

■ write-enable (load)

■ read-enable (output enable)

22CSE370, Lecture 25

RD

WR

A9
A8
A7
A6
A5
A4
A3
A2
A2
A1
A0

IO3
IO2
IO1
IO0

Memories

◆ Larger collections of storage elements
■ implemented not as FFs but as much more efficient latches
■ high-density memories use 1 to 5 switches (transitors) per memory

bit

◆ Static RAM – 1024 words each 4 bits wide
■ once written, memory holds forever (not true for denser dynamic

RAM)
■ address lines to select word

� (10 lines for 1024 words)

■ read enable
� same as output enable
� often called chip select
� permits connection of many

chips into larger array

■ write enable (same as load enable)
■ bi-directional data lines

� output when reading, input when writing

23CSE370, Lecture 25

Instruction sequencing

◆ Example – an instruction to add the contents of two registers (Rx
and Ry) and place result in a third register (Rz)

◆ Step 1: get the ADD instruction from memory into an instruction
register (IR)

◆ Step 2: decode instruction
■ instruction in IR has the code of an ADD instruction

■ register indices used to generate output enables for registers Rx and

Ry

■ register index used to generate load signal for register Rz

◆ Step 3: execute instruction
■ enable Rx and Ry output and direct to ALU

■ setup ALU to perform ADD operation

■ direct result to Rz so that it can be loaded into register

24CSE370, Lecture 25

Instruction types

◆ Data manipulation
■ add, subtract

■ increment, decrement

■ multiply

■ shift, rotate

■ immediate operands

◆ Data staging
■ load/store data to/from memory

■ register-to-register move

◆ Control
■ conditional/unconditional branches in program flow

■ subroutine call and return

25CSE370, Lecture 25

Elements of the control unit (aka instruction
unit)

◆ Standard FSM elements
■ state register

■ next-state logic

■ output logic (datapath/control signalling)

■ Moore or synchronous Mealy machine to avoid loops unbroken by FF

◆ Plus additional "control" registers
■ instruction register (IR)

■ program counter (PC)

◆ Inputs/outputs
■ outputs control elements of data path

■ inputs from data path used to alter flow of program (test if zero)

26CSE370, Lecture 25

Reset

Initialize
Machine

Register-
to-Register

Branch
Not Taken

Branch
Taken

Instruction execution

◆ Control state diagram (for each diagram)
■ reset

■ fetch instruction

■ decode

■ execute

◆ Instructions partitioned into three classes
■ branch

■ load/store

■ register-to-register

◆ Different sequence through
diagram for each
instruction type

Init

Fetch
Instr.

XEQ
Instr.

Load/
StoreBranch

Incr.
PC

27CSE370, Lecture 25

Cin

Ain
Bin

Sum

Cout

FA

HA
Ain

Bin

Sum

Cin

Cout
HA

Data path (hierarchy)

◆ Arithmetic circuits constructed in hierarchical and iterative fashion
■ each bit in datapath is functionally identical

■ 4-bit, 8-bit, 16-bit, 32-bit , 32-bit datapaths

28CSE370, Lecture 25

16 16

A B

S ZN

Operation

16

Data path (ALU)

◆ ALU block diagram
■ input: data and operation to perform

■ output: result of operation and status information

29CSE370, Lecture 25

16

Z

N

OP

16

ACREG

16

16

Data path (ALU + registers)

◆ Accumulator
■ special register
■ one of the inputs to ALU
■ output of ALU stored back in accumulator

◆ One-address instructions
■ operation and address of one operand
■ other operand and destination

is accumulator register
■ AC ← AC op Mem[addr]
■ "single address instructions”

(AC implicit operand)

◆ Multiple registers
■ part of instruction used

to choose register operands

30CSE370, Lecture 25

2 bits wide1 bit wide

Data path (bit-slice)

◆ Bit-slice concept – iterate to build n-bit wide datapaths

CO CIALU

AC

R0

from
memory

rs

rt

rd

CO ALU

AC

R0

from
memory

rs

rt

rd

CIALU

AC

R0

from
memory

rs

rt

rd

31CSE370, Lecture 25

Instruction path

◆ Program counter
■ keeps track of program execution

■ address of next instruction to read from memory

■ may have auto-increment feature or use ALU

◆ Instruction register
■ current instruction

■ includes ALU operation and address of operand

■ also holds target of jump instruction

■ immediate operands

◆ Relationship to data path
■ PC may be incremented through ALU

■ contents of IR may also be required as input to ALU

32CSE370, Lecture 25

Data path (memory interface)

◆ Memory
■ separate data and instruction memory (Harvard architecture)

� two address busses, two data busses
■ single combined memory (Princeton architecture)

� single address bus, single data bus

◆ Separate memory
■ ALU output goes to data memory input
■ register input from data memory output
■ data memory address from instruction register
■ instruction register from instruction memory output
■ instruction memory address from program counter

◆ Single memory
■ address from PC or IR
■ memory output to instruction and data registers
■ memory input from ALU output

33CSE370, Lecture 25

16

Z

N

OP

8

ACREG

16

16
load
path

store
path

Data Memory
(16-bit words)

16

OP

16

PCIR

16

16

data

addr

rd wr

MARControl
FSM

Block diagram of processor

◆ Register transfer view of Princeton architecture
■ which register outputs are connected to which register inputs

■ arrows represent data-flow, other are control signals from control FSM

■ MAR may be a simple multiplexer rather than separate register

■ MBR is split in two (REG and IR)

■ load control for each register

34CSE370, Lecture 25

Control
FSM

16 16

Z

N

OP

16

ACREG

16
load
path

store
path

Data Memory
(16-bit words)

16 16

OP

16

PCIR

16

data

addr

rd wr

Inst Memory
(8-bit words)

data

addr

Block diagram of processor

◆ Register transfer view of Harvard architecture
■ which register outputs are connected to which register inputs

■ arrows represent data-flow, other are control signals from control FSM

■ two MARs (PC and IR)

■ two MBRs (REG and IR)

■ load control for each register

