
1CSE370, Lecture 16

Overview

◆ Logistics
■ HW5 due today

■ HW6 due next Friday

◆ Last lecture
■ Finish basic latches and Flip-flops

■ Registers
� Shift registers

� Counters

■ Basic state machine design

◆ Today
■ Sequential Verilog

2CSE370, Lecture 16

Variables

◆ wire
■ Connects components together

◆ reg
■ Saves a value

� Part of a behavioral description

■ Does NOT necessarily become a register when you synthesize
� May become a wire

◆ The rule
■ Declare a variable as reg if it is a target of an assignment

statement inside an always block
� Continuous assign doesn’t count

3CSE370, Lecture 16

Sequential Verilog

◆ Sequential circuits: Registers & combinational logic
■ Use positive edge-triggered registers

■ Avoid latches and negative edge-triggered registers

◆ Register is triggered by “posedge clk”

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;

always @(posedge clock) begin
Q <= D;

end
endmodule

Example: A D flip-flop

A real register. Holds Q
between clock edges

4CSE370, Lecture 16

always block

◆ A construct that describes a circuit’s behavior
■ Can contain multiple statements

■ Can contain if, for, while, case
■ Triggers at the specified conditions

■ begin/end groups statements within always block

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;

always @(posedge clock) begin
Q <= D;

end
endmodule

5CSE370, Lecture 16

module and_gate(out, in1, in2);

input in1, in2;

output out;

reg out;

always @(in1 or in2) begin

out = in1 & in2;

end

endmodule

Not a real register!!

Holds assignment in

always block

specifies when block is executed

i.e. triggered by changes in in1 or in2

always example

The compiler will not synthesize
this code to a register, because
out changes whenever in1 or in2
change. Can instead simply write

wire out, in1, in2;

and (out, in1, in2);

6CSE370, Lecture 16

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1) begin
out = in1 & in2;

end
endmodule

Incomplete sensitivity list or incomplete
assignment

◆ What if you omit an input trigger (e.g. in2)
■ Compiler will insert a latch to hold the state

■ Becomes a sequential circuit — NOT what you want

2 rules:

1) Include all inputs in the trigger list

2) Use complete assignments

⇒ Every path must lead to an assignment for out
⇒ Otherwise out needs a state element

Real state!! Holds out
because in2 isn’t specified
in always sensitivity list

7CSE370, Lecture 16

Incomplete sensitivity lists

◆ • always @(a or b) // it’s or, not ||

f = a & b;

◆ • always @(a)

f = a & b;

◆ • always

f = a & b;

◆ • Just use always@(*) for combinational logic

8CSE370, Lecture 16

Assignments

◆ Be careful with always assignments
■ Which of these statements generate state?

always @(c or x) begin
if (c) begin

value = x;
end
y = value;

end

always @(c or x) begin
value = x;
if (c) begin

value = 0;
end
y = value;

end
always @(c or x) begin

if (c)
value = 0;

else if (x)
value = 1;

end

always @(a or b)
f = a & b & c;

end

2 rules:

1) Include all inputs in the sensitivity list

2) Use complete assignments

⇒ Every path must lead to an assignment for out
⇒ Otherwise out needs a state element

9CSE370, Lecture 16

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = myfunction(in1, in2);
function myfunction;

input in1, in2;
begin

myfunction = in1 & in2;
end

endfunction
endmodule

Benefits:
Functions force a result
⇒ Compiler will fail if function

does not generate a result
⇒ If you build a function wrong

the circuit will not synthesize.
If you build an always block
wrong you get a register

Another way: Use functions

◆ Functions for combinational logic
■ Functions can’t have state

10CSE370, Lecture 16

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 2’b00) Y = A;
else if (sel == 2’b01) Y = B;
else if (sel == 2’b10) Y = C;
else if (sel == 2’b11) Y = D;

endmodule

if

◆ Same as C if statement

⇒ Single if statements synthesize to multiplexers
⇒ Nested if /else statements usually synthesize to logic

11CSE370, Lecture 16

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel[0] == 0)

if (sel[1] == 0) Y = A;
else Y = B;

else
if (sel[1] == 0) Y = C;
else Y = D;

endmodule

if (another way)

12CSE370, Lecture 16

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
case (sel)

2’b00: Y = A;
2’b01: Y = B;
2’b10: Y = C;
2’b11: Y = D;

endcase
endmodule

case

case executes sequentially
⇒ First match executes
⇒ Don’t need to break out of case

case statements synthesize to muxes

13CSE370, Lecture 16

case (another way)

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;

assign out = mymux(sel, A, B, C, D);
function mymux;

input [1:0] sel, A, B, C, D;
begin

case (sel)
2’b00: mymux = A;
2’b01: mymux = B;
2’b10: mymux = C;
2’b11: mymux = D;

endcase
end

endfunction
endmodule

Note: You can define a function in a file

Then include it into your Verilog module

14CSE370, Lecture 16

// Simple binary encoder (input is 1-hot)
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (A)

8’b00000001: Y = 0;
8’b00000010: Y = 1;
8’b00000100: Y = 2;
8’b00001000: Y = 3;
8’b00010000: Y = 4;
8’b00100000: Y = 5;
8’b01000000: Y = 6;
8’b10000000: Y = 7;
default: Y = 3’bx; // Don’t care about other cases

endcase
endmodule

default case

If you omit the default, the compiler will
create a latch for Y
⇒ Either list all 256 cases
⇒ Or use a function (compiler will

warn you of missing cases)

15CSE370, Lecture 16

// Priority encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (1’b1)

A[0]: Y = 0;
A[1]: Y = 1;
A[2]: Y = 2;
A[3]: Y = 3;
A[4]: Y = 4;
A[5]: Y = 5;
A[6]: Y = 6;
A[7]: Y = 7;
default: Y = 3’bx; // Don’t care when input is a ll 0’s

endcase
endmodule

case executes sequentially

Case statements execute sequentially

⇒ Take the first alternative that matches

16CSE370, Lecture 16

// simple encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
integer i; // Temporary variables for program
reg [7:0] test;

always @(A) begin
test = 8b’00000001;
Y = 3’bx;
for (i = 0; i < 8; i = i + 1) begin

if (A == test) Y = i;
test = test << 1; // Shift left, pad with 0s

end
end

endmodule

for

for statements synthesize as
cascaded combinational logic

⇒ Verilog unrolls the loop

17CSE370, Lecture 16

Verilog while/repeat/forever

◆ while (expression) statement
■ execute statement while expression is true

◆ repeat (expression) statement
■ execute statement a fixed number of times

◆ forever statement
■ execute statement forever

18CSE370, Lecture 16

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and non-blocking assignments

◆ Blocking assignments (Q = A)
■ Variable is assigned immediately

■ New value is used by subsequent statements

◆ Non-blocking assignments (Q <= A)
■ Variable is assigned after all scheduled statements are executed

■ Value to be assigned is computed but saved for later

◆ Example: Swap

19CSE370, Lecture 16

reg B, C, D;
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end

reg B, C, D;
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end

Blocking and non-blocking assignments

20CSE370, Lecture 16

always @(posedge CLK)
begin

A = B;
end

always @(posedge CLK)
begin

B = A;
end

always @(posedge CLK)
begin

A <= B;
end

always @(posedge CLK)
begin

B <= A;
end

Swap

◆ The following code executes incorrectly
■ One block executes first

■ Loses previous value of variable

◆ Non-blocking assignment fixes this
■ Both blocks are scheduled by posedge CLK

21CSE370, Lecture 16

A simple stateful example

module stateful_and (out, in, clk);

input in, clk;

output out;

reg out;

always @(posedge clk) begin

out <= in & out;

end

endmodule

22CSE370, Lecture 16

Parallel versus serial execution

◆ assign statements are implicitly parallel
■ “=” means continuous assignment
■ Example

assign E = A & D;
assign A = B & C;

■ A and E change if B changes

◆ always blocks execute in parallel
■ always @(posedge clock)

◆ Procedural block internals not necessarily parallel
■ “=” is a blocking assignment (sequential)

■ “<=” is a nonblocking assignment (parallel)
■ Examples of procedures: always , function , etc.

B

C

D

A

E

23CSE370, Lecture 16

wire [3:0] x, y, a, b, c, d;

assign apr = ^a;
assign y = a & ~b;
assign x = (a == b) ?

a + c : d + a;

x

+

+

==

a

b

c

d x
+

==

a

b

c

d

Synthesis examples

24CSE370, Lecture 16

VerilogVerilog tips and trapstips and traps

25CSE370, Lecture 16

Constants: 32 bits, decimalConstants: 32 bits, decimal

• wire [7:0] foo = 127; // synthesis warning!

• wire [7:0] foo = 8’d127;

• wire [7:0] foo = 8’b11111111;

• wire [7:0] foo = 8’hff;

• wire [7:0] foo = 8’hFF;

• watch out: 1010 looks like 4’b1010!

26CSE370, Lecture 16

TruncationTruncation

wire [7:0] a = 8’hAB;

wire b; // oops! forgot width

wire [7:0] c;

assign b = a; // synthesis warning if lucky.

assign c = a;

27CSE370, Lecture 16

TIP: TIP: (blocking) (blocking) = vs. <= = vs. <= (non(non--blocking)blocking)

◆ • Simple rule:
■ • If you want sequential logic, use

always @(posedge clk) with <= (non-blocking)

■ • If you want combinational logic, use

always @(*) with = (blocking)

28CSE370, Lecture 16

VerilogVerilog Stratified Event Queue [1]Stratified Event Queue [1]

◆ Region 1: Active Events
■ Most events except those explicitly in other regions
■ Includes $display system tasks

◆ Region 2: Inactive Events
■ Processed after all active events
■ #0 delay events (bad!)

◆ Region 3: Non-blocking Assign Update Events
■ Evaluation previously performed
■ Update is after all active and inactive events complete

◆ Region 4: Monitor Events
■ Caused by $monitor and $strobe system tasks

◆ Region 5: Future Events
■ Occurs at some future simulation time
■ Includes future events of other regions
■ Other regions only contain events for CURRENT simulation time

29CSE370, Lecture 16

VerilogVerilog Stratified Event Queue [2]Stratified Event Queue [2]

within a block,
blocking

assignments,
are in order

