Lecture 13

We've finished combinational logic...

O Logistics
= HWS5 due date delayed until next Friday, Feb 13 in class
< Requires work with Altec software
< Check the online version for the test fixtures
= Lab 6 will be a bit shorter than most so you should have a
chance to catch up if you are behind

O Last lecture
= Adders

0 Today
= Questions about Combinational Logic?
= Introduction to Sequential Logic
< The basic concepts
< An example

CSE370, Lecture 13

Negative numbers in binary

= Truth tables Questions ?

= Basic logic gates

= Schematic diagrams

= Minterm and maxterm expansions (canonical, minimized)

= de Morgan's theorem

= AND/OR to NAND/NOR logic conversion

= K-maps, logic minimization, don't cares

= Multiplexers/demultiplexers

= PLAs/PALs

= ROMs

= Multi-level logics

» Timing diagrams When the m\rl)\{ﬁ Qﬁgnrg;%é\{%éooalt%ﬁ rcnheamnare)a
= Hazards

=« Adders Next: Sequential logic can store memory...

CSE370, Lecture 13

Sequential Logic (next 5 weeks!)

O We learn the details
= Latches, flip-flops, registers (storage)
= Shift registers, counters (we can count now!)
= State machines (when we can store, we have states)
Moore and Mealy machines (types of state machines)
Timing and timing diagrams
< timing more important than for combinational logic
= Synchronous and asynchronous inputs
< Metastability (problem!)

CSE370, Lecture 13

The "WHY” slide

0 Learning sequential logic
= Having the ability to hold memory is important. If you
couldn't use your prior knowledge stored in the memory, you
wouldn’t be very smart (and same goes for a computer).

CSE370, Lecture 13

Sequential versus combinational

A —
B —

L ,C

|c|ock

Apply fixed inputs A, B
When the clock ticks, the output becomes available
Observe C
Wait for another clock tick
Observe C again

Combinational: C will stay the same
Sequential: C may be different

CSE370, Lecture 13

Sequential versus combinational

0 Combinational systems are memoryless
= Outputs depend only on the present inputs

B T

Inputs —— System - Outputs

B I =

O Sequential systems have memory
= Outputs depend on the present and the previous inputs

Inputs
— | System [—— Outputs

L ——1

Feedback

CSE370, Lecture 13

Synchronous sequential systems

0 Memory holds a system'’s state
= Changes in state occur at specific times
= A periodic signal times or clocks the state changes
= The clock period is the time between state changes

A —|
,C
B —
State changes occur
I clock at rising edge of clock
pulsewidth duty cycle = pulsewidth/period
f— (here it is 50%)
clock [E) I Ay N
f—l
period
CSE370, Lecture 13 7

Steady-state abstraction

O Outputs retain their settled values
= The clock period must be long enough for all voltages to
settle to a steady state before the next state change

A — | .C
B —
I clock Clock hides transient
behavior
clock [N |
Settled value /
CSE370, Lecture 13 8

What did I just say about sequential logic?

O Has clock (mostly - always for us)
= Synchronous = clocked
= Exception: Asynchronous circuits

0 Has state
= State = memory

0 Employs feedback

0 Assumes steady-state signals
= Signals are valid after they have settled
= State elements hold their settled output values

CSE370, Lecture 13 9

Example: A sequential system

O Door combination lock

Enter three numbers in sequence and the door opens

As each new number is entered, press ‘new’ (like *enter’)
If there is an error the lock must be reset

After the door opens the lock must be reset

Inputs: Sequence of numbers, reset, new

Outputs: Door open/close

Memory: Must remember the combination

We will go through the motion of designing a real system

We will teach details of “how” to do these steps
in the next few weeks

CSE370, Lecture 13 10

Understand the problem

0 Consider I/0 and unknowns
= How many bits per input?
= How many inputs in sequence?
= How do we know a new input is entered?
= How do we represent the system states?

new value reset

clock —1>

open/closed

CSE370, Lecture 13 11

Implement using sequential logic

0 Behavior
= Clock tells us when to look at inputs
< After inputs have settled
= Sequential: Enter sequence of numbers
= Sequential: Remember if error occurred

0 A diagram may be helpful new value reset
= Assume synchronous inputs l l l l l l
= State sequence

< Enter 3 numbers serially

< Remember if error occurred
= All states have outputs

% Lock open or closed

clock —1>

open/closed

CSE370, Lecture 13 12

A diagram (called finite-state diagram)

0 States: 5 0 Inputs: reset, new, results of
= Each state has outputs comparisons

0 Outputs: open/closed = Assume synchronous inputs

We use state diagrams to

represent sequential logic l
System transitions between ERR
finite numbers of states

1=
Cl!= value 31= value

& e

ew
OPEN
reset —{ closed closed closed open
C1== value C2== valu C3== value
Shorthand: implies & new & new & new

arrow from every state
labeled ‘reset’ not new not new not new

CSE370, Lecture 13 13

Separate data path and control

0 Data path 0 Control
= Stores combination = Finite state-machine controller
= Compares inputs with = Control for data path
combination = State changes clocked

controller

open/closed

CSE370, Lecture 13 14

Refine diagram; generate state table

0 Refine state diagram to
include internal structure
not equal

& ne

not new not new not new

O Generate
state table

CSE370, Lecture 13 15

Encode state table

0 State can be: S1, S2, S3, OPEN, or ERR
= Need at least 3 bits to encode: 000, 001, 010, 011, 100
= Can use 5 bits: 00001, 00010, 00100, 01000, 10000
= Choose 4 bits: 0001, 0010, 0100, 1000, 0000

O Output to mux can be: C1, C2, or C3
= Need 2 or 3 bits to encode
= Choose 3 bits: 001, 010, 100

0 Output open/closed can be: Open or closed
= Need 1 or 2 bits to encode
= Choose 1 bit: 1, 0

CSE370, Lecture 13 16

Encode state table (con't)

0 Good encoding choice!
= Mux control is identical to last 3 state bits
= Open/closed is identical to first state bit
= Output encoding = the outputs and state bits are the same

next
reset new equal state| state mux open/closed
1 - - - 0001 001 O
0 0 - 0001| 0001 001 0
0 1 0 0001| 0000 - 0
0 1 1 0001 0010 010 O
0 1 1 0100| 1000 - 1
CSE370, Lecture 13 17

Implementing the controller

0 We will learn how to special circuit element,
design the controller called a register, for
iven the encode storing inputs when
9 . oded told to by the clock
state-transition table

new equal reset

mux
comb. logic

Lmux |
control - rd
tateq]

S

—clock

open/closed

CSE370, Lecture 13 18

Designing the datapath

= Four multiplexers
% 2-input ANDs and 3-input OR value; C1; C2 C3

= Four single-bit comparators
< 2-input XNORs

= 4-input AND

4 4 4 mux
control
4

value i eqT’ equal

|

CSE370, Lecture 13

mux
control

Where did we use memory?

0 Memory: Stored combination, state (errors or
successes in past inputs)

new equal reset

value
mux
control controller
comparator clock
equal

open/closed

CSE370, Lecture 13

Where did we use feedback?

0 Feedback: Comparator output ("equal" signal)

new equal reset

value l l l
- mux
'W controller
elock
equal

open/closed

CSE370, Lecture 13

21

Where did we use clock?

0 Clock synchronizes the inputs
= Accept inputs when clock goes high

O Controller is clocked
= Mux-control and open/closed signals change on the clock edge

new equal reset

value
[c1] [c2] [c3]
[_muftiplexer J«— X —— troll
control controller ok
coe
equal open/closed

CSE370, Lecture 13

