Lecture 16

- Timing
 - Terminology
 - Timing issues
 - Asynchronous inputs

Terminology

- **Setup time** t_{SU}: Amount of time the input must be stable before the clock transitions high (or low for negative-edge triggered FF)
- **Hold time** t_H: Amount of time the input must be stable after the clock transitions high (or low for negative-edge triggered FF)

Terminology

- **Clock width** t_W: Minimum clock width that must be met in order for FF to work properly
- Propagation delays t_{p-lh} and t_{p-hl}: Delay between clocking event and change in output (high to low, low to high)
 - Longer than hold time

Terminology

- **Clock width** t_W: Minimum clock width that must be met in order for FF to work properly
- Propagation delays t_{p-lh} and t_{p-hl}: Delay between clocking event and change in output (high to low, low to high)
 - Longer than hold time

Cascading flip-flops

- Flip-flop propagation delays exceed hold times
 - Second stage commits its input before Q0 changes
System considerations

- Basic rules for correct timing
 - Clock flip-flops synchronously (all at the same time)
 - No flip-flop changes state more than once per clock cycle
 - FF propagation delay > hold time
 - Avoid mixing positive-edge triggered and negative-edge triggered flip-flops in the same circuit

- Use edge-triggered flip-flops wherever possible
 - Avoid latches
 - Most common: Master-slave D

Clock skew

- Goal: Clock all flip-flops at the same time

Original state: IN = 0, Q0 = 1, Q1 = 1
Next state: Q0 = 0, Q1 = 0 (should be Q1 = 1)

Clock skew

- Difficult to achieve in high-speed systems
 - Clock delays (wire, buffers) are comparable to logic delays

\[T_p > T_h \Rightarrow T_p > T_{\text{skew}} + T_h \]

\[\text{If } T_{\text{skew}} < 0, T_{\text{period}} + T_{\text{skew}} > T_p + T_{su} \]

Asynchronous versus synchronous

- Asynchronous
 - State changes occur when state inputs change
 - Feedback elements may be wires or delays

- Synchronous
 - State changes occur synchronously
 - Feedback elements are clocked

Asynchronous inputs

- Clocked circuits are synchronous
 - Circuit changes state only at clock edges
 - Signals (voltages) settle in-between clock edges

- Unclocked circuits or signals are asynchronous
 - No master clock
 - Real-world inputs (e.g. a keypress) are asynchronous
Asynchronous inputs

- Synchronous circuits have asynchronous inputs
 - Reset signal, memory wait, user input, etc.
 - Inputs can change at any time
 - We must synchronize the input to our clock
 - Inputs will violate flip-flop setup/hold times

Synchronizer failure

- Occurs when FF input changes near clock edge
 - Input is neither 1 or 0 when clock goes high
 - Output may be neither 0 or 1
 - May stay undefined for a long time
 - Undefined state is called metastability

Minimizing synchronizer failure

- Failure probability can never be zero
 - Cascade two (or more) flip-flops
 - Effectively synchronizes twice
 - Both would have to fail for system to fail

Handling asynchronous inputs

- Never fan-out asynchronous inputs
 - Synchronize at circuit boundary
 - Fan-out synchronized signal

Summary

- For sequential logic circuits, timing issues have to be considered.
- Inputs are often asynchronous and can cause problems.
- Different amount of delay at different part of the circuit can cause problems also.
- Solutions:
 - Cascade flip flops in series
 - Design to keep timing alignment in mind (length of wires, etc)