[Lecture 13]

= Overview of sequential logic
o Basic concepts
o An example

[Sequential vS. combinational]

= Combinational systems are memoryless
o Outputs depend only on the present inputs

Inputs - System - Outputs

= Sequential systems have memory
o Outputs depend on the present and the previous
inputs
Inputs

System . Outputs

H H i

Feedback

[Sequential vs. combinational]

A — c

—

B—

[clock

Apply fixed inputs A, B
When the clock ticks, the output becomes available
Observe C
Wait for another clock tick
Observe C again

Combinational: C will stay the same
Sequential: C may be different

[Synchronous sequential systems]

= Memory holds a system'’s state
o Changes in state occur at specific times

o A periodic signal times or clocks the state
changes

[t]

A —

| .c

State changes occur
I clock at rising edge of clock

pulsewidth

f—1
clock

f—
period

[Steady-state abstraction]

= The clock period must be long enough
for all voltages to settle to a steady
state before the next state change

Clock hides transient
behavior

clock [1L_I L [1_TI1_

¢
Settlez value //

Recap: Sequential logic

= Mostly has clock (for us, always)
o Synchronous = clocked
o Exception: Asynchronous circuits
= Has state
o State = memory
= Employs feedback
= Assumes steady-state signals
o Signals are valid after they have settled
o State elements hold their settled output values

Example: Sequential system

= Door combination lock
Enter three numbers in sequence and the door opens
As each new number is entered, press ‘new’ (like ‘enter)
If there is an error the lock must be reset
After the door opens the lock must be reset
= Inputs?
Sequence of numbers, reset, new
= Outputs?
Door open/close
= Memory?
Must remember the combination and what was entered

Understand the problem

= How many bits per input?
= How many inputs in sequence?

= How do we know a new input is
entered?

= How do we represent the
system states? clock —>
o What are the system states?

new value reset

open/closed

Implementation

= A diagram may be helpful
o Assume synchronous inputs
o State sequence
= Enter 3 numbers serially
= Remember if error occurred
o All states have outputs
= Lock open or closed

10

Finite-state diagram

= States: 5 = Inputs: reset, new,
o Each state has results of
outputs comparisons
= Outputs: o Assume
open/c|osed synchronous inputs

We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

11

Finite-state diagram

Cl!= value 31= value
& ne) .
& new
1 /\iz PEN
reset ——»{ closed closed closed open

Cl== valué\ (C2== valué\ (/C3== valu
Shorthand: implies & new & new & new
arrow from every state
labeled ‘reset’ not new not new not new

12

Separate data path and control

= Data path = Control
o Stores combination o State-machine
o Compares inputs controller
with combination o State changes
clocked

4l 4f 4

multiplexer
4 controller

comparator

Refine state diagram

= Refine state diagram to include
internal structure

not new not new not new

14

13
open/closed
Generate state table
S1 S2 c2 closed
0 1 1 S3 | OPEN - open
15

Encode state table

= State can be: S1, S2, S3, OPEN, or ERR
Need at least 3 bits to encode: 000, 001, 010, 011, 100
Can use 5 bits: 00001, 00010, 00100, 01000, 10000
Choose 4 bits: 0001, 0010, 0100, 1000, 0000
= Output to mux can be: C1, C2, or C3
Need 2 or 3 bits to encode
Choose 3 bits: 001, 010, 100
= Output open/closed can be: Open or closed
Need 1 or 2 bits to encode
Choose 1 bit: 1, 0

16

Encode state table

= Good encoding choice!
o Mux control is identical to last 3 state bits
o Open/closed is identical to first state bit

o Output encoding = the outputs and state bits

are the same
next

reset new equal state| state mux open/closed
1 - - - 0001 001 O
0 0 - 0001f 0001 001 O
0 1 0 0001{ 0000 — 0
0 1 1 0001f 0010 010 O
0 1 1 0100(1000 — 1

17

Implementing the controller

H special circuit element,
= Wil learn how to called a register, for

design the controller storing inputs when
given the encoded told to by the clock
state-transition table

new equal reset

mux omb. logic
Cl g
control T *

—clock

open/closed
18

[Designing the datapath

4 4 4 mux
control
4
value—~—{ comparator —————
4 equal

19

[Designing the datapath

valug; C1; C2; C3

Four multiplexers - mux
o 2-input ANDs and 3-]| control
input OR
Four single-bit
comparators —]
o 2-input XNORs

4-input AND

equal

20

[Where did we use memory?

Memory: Stored combination, state
(errors or successes in past inputs)

new equal reset

value

. mux
multiplexer “control | controller

[clock

equal open/closed

21

[Where did we use feedback?

Feedback: Comparator output ("equal”

signal)
new equal reset
value
contial | controller
l=—clock
l
equal open/closed

22

[Where did we use clock?

Clock synchronizes the inputs
o Accept inputs when clock goes high
Controller is clocked

o Mux-control and open/closed signals change on
the clock Edge new equal reset

valie |]|

[c1] [c2] [c3]
[_multiplexer]« X "
control controller
i [—clock
equal open/closed

23

