
1

Lecture 13

� Overview of sequential logic
� Basic concepts

� An example

2

Sequential vs. combinational

� Combinational systems are memoryless
� Outputs depend only on the present inputs

� Sequential systems have memory
� Outputs depend on the present and the previous

inputs

Inputs OutputsSystem

Inputs
OutputsSystem

Feedback

3

Sequential vs. combinational

B

A
C

clock

Apply fixed inputs A, B

When the clock ticks, the output becomes available

Observe C

Wait for another clock tick

Observe C again

Combinational: C will stay the same

Sequential: C may be different

4

Synchronous sequential systems

� Memory holds a system’s state
� Changes in state occur at specific times

� A periodic signal times or clocks the state
changes

5

Clock

period

pulsewidth

B

A
C

clock
State changes occur

at rising edge of clock

clock

6

Steady-state abstraction

� The clock period must be long enough
for all voltages to settle to a steady
state before the next state change

clock

Clock hides transient

behavior

C

Settled value

7

Recap: Sequential logic

� Mostly has clock (for us, always)
� Synchronous = clocked
� Exception: Asynchronous circuits

� Has state
� State = memory

� Employs feedback
� Assumes steady-state signals

� Signals are valid after they have settled
� State elements hold their settled output values

8

Example: Sequential system

� Door combination lock
� Enter three numbers in sequence and the door opens
� As each new number is entered, press ‘new’ (like ‘enter)
� If there is an error the lock must be reset
� After the door opens the lock must be reset

� Inputs?
� Sequence of numbers, reset, new

� Outputs?
� Door open/close

� Memory?
� Must remember the combination and what was entered

9

Understand the problem

� How many bits per input?
� How many inputs in sequence?

� How do we know a new input is
entered?

� How do we represent the
system states?
� What are the system states?

resetvalue

open/closed

new

clock

10

Implementation

� A diagram may be helpful
� Assume synchronous inputs

� State sequence
� Enter 3 numbers serially
� Remember if error occurred

� All states have outputs
� Lock open or closed

11

Finite-state diagram

� States: 5
� Each state has

outputs

� Outputs:
open/closed

� Inputs: reset, new,
results of
comparisons
� Assume

synchronous inputs

We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

12

Finite-state diagram

closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

C1!= value
& new

C2!= value
& new

C3!= value
& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

Shorthand: implies
arrow from every state
labeled ‘reset’

13

Separate data path and control

� Data path
� Stores combination
� Compares inputs

with combination

� Control
� State-machine

controller
� State changes

clocked

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

14

Refine state diagram

� Refine state diagram to include
internal structure

closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

15

Generate state table

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

next

16

Encode state table

� State can be: S1, S2, S3, OPEN, or ERR
� Need at least 3 bits to encode: 000, 001, 010, 011, 100
� Can use 5 bits: 00001, 00010, 00100, 01000, 10000
� Choose 4 bits: 0001, 0010, 0100, 1000, 0000

� Output to mux can be: C1, C2, or C3
� Need 2 or 3 bits to encode
� Choose 3 bits: 001, 010, 100

� Output open/closed can be: Open or closed
� Need 1 or 2 bits to encode
� Choose 1 bit: 1, 0

17

Encode state table

� Good encoding choice!
� Mux control is identical to last 3 state bits
� Open/closed is identical to first state bit

� Output encoding ⇒ the outputs and state bits
are the same

reset new equal state state mux open/closed

1 – – – 0001 001 0

0 0 – 0001 0001 001 0

0 1 0 0001 0000 – 0

0 1 1 0001 0010 010 0

...

0 1 1 0100 1000 – 1

...

next

18

Implementing the controller

� Will learn how to
design the controller
given the encoded
state-transition table

reset

open/closed

new equal

mux

control

clock

comb. logic

state

special circuit element,

called a register, for

storing inputs when

told to by the clock

19

Designing the datapath

C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4
value

20

Designing the datapath

� Four multiplexers
� 2-input ANDs and 3-

input OR

� Four single-bit
comparators
� 2-input XNORs

� 4-input AND

C1i C2i C3i

mux
control

valuei

equal

21

Where did we use memory?

� Memory: Stored combination, state
(errors or successes in past inputs)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux

control
clock

22

Where did we use feedback?

� Feedback: Comparator output ("equal"
signal)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

23

Where did we use clock?

� Clock synchronizes the inputs
� Accept inputs when clock goes high

� Controller is clocked
� Mux-control and open/closed signals change on

the clock edge reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

