
1

Lecture 7

� Verilog
� Structural constructs
� Describing combinational circuits

� Additional references
� Tutorial and reference manual are found in

ActiveHDL help
� “Starter’s Guide to Verilog 2001” by Michael

Ciletti copies for borrowing in hardware lab

2

Combinational design

� Step 1: Understand the problem
� Identify the inputs and outputs
� Draw a truth table

� Step 2: Simplify the logic
� Draw a K-map
� Write a simplified Boolean expression

� SOP or POS
� Use don’t cares

� Step 3: Implement the design
� Logic gates and/or
� Verilog

3

Ways of specifying circuits

� Schematics
� Structural description
� Describe circuit as interconnected elements

� Build complex circuits using hierarchy
� Large circuits are unreadable

� Hardware description languages (HDLs)
� Not programming languages

� Parallel languages tailored to digital design

� Synthesize code to produce a circuit

4

Verilog versus VHDL

� Both “IEEE standard” languages

� Most tools support both
� Verilog is “simpler”

� Less syntax, fewer constructs

� VHDL is more structured
� Can be better for large, complex systems
� Better modularization

5

Simulation and synthesis

� Simulation
� Models what a circuit does

� Multiply is “*”, ignoring implementation options

� Allows you to test design options
� “Execute” a design to verify correctness

� Synthesis
� Converts your code to a "netlist"

� Can simulate synthesized design

� Tools map your netlist to hardware

6

Simulation and synthesis

� Simulation and synthesis in the CSE curriculum
� CSE370: Learn simulation
� CSE467: Learn synthesis

Synthesis
HDL

Description

Gate or
Transistor
Description

Simulation Simulation
Physical

Implementation

Functional
Validation

Functional/
Timing

Validation

Real
Chip!

7

Simulation

� You provide an environment
� Using non-circuit constructs

� Active-HDL waveforms, read files, print

� Using Verilog simulation code
� A “test fixture”

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizable)

8

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

Specifying circuits in Verilog

� Three major styles
� Instances and wires
� Continuous assignments
� “always” blocks

wire E;
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

wire E;
assign E = A & B;
assign Y = ~C;
assign X = E | Y;

reg E, X, Y;
always @ (A or B or C)
begin

E = A & B;
Y = ~C;
X = E | Y;

end

“Structural” “Behavioral”

9

Data types

� Values on a wire
� 0, 1, x (unknown or conflict), z (tristate or

unconnected)

� Vectors
� A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]

� Unsigned integer value
� Indices must be constants

10

Manipulating vectors

� Concatenating bits/vectors, use { }
� e.g. sign extend

� B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
� B[7:0] = {4{A[3]}, A[3:0]};

� Style: Use a[7:0] = b[7:0] + c[7:0]
Not a = b + c;

11

Data types that do NOT exist

� Structures

� Pointers
� Objects

� Recursive types

Verilog is not C or Java or Lisp or …!

12

Numbers

� Format: <sign><size><base><number>
� 14

� Decimal number

� –4’b11
� 4-bit 2’s complement binary of 0011 (is 1101)

� 12’b0000_0100_0110
� 12 bit binary number (_ is ignored)

� 12’h046
� 3-digit (12-bit) hexadecimal number

13

Numbers are unsigned

� C[4:0] = A[3:0] + B[3:0];

� if A = 0110 (6) and B = 1010(–6),
then C = 10000 (not 00000)

� B is zero-padded, not sign-extended

14

Operators

Similar to Java operators

15

Two abstraction mechanisms

� Modules
� More structural, but also behavioral
� Heavily used in 370 and “real” Verilog

code

� Functions
� More behavioral
� Used to some extent in “real” Verilog, but

not much in 370

16

Basic building blocks: modules

// first simple example
module simple (X,Y,A,B,C);

input A,B,C;
output X,Y;
wire E
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

endmodule

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

17

Basic building blocks: modules

� Instanced into a design

� Never called

� Use wires for connections

� Modules execute in parallel

� Gate declarations (and, or,
etc)

� List outputs first

� Inputs second

� Name can’t begin with a
number

� Names are case sensitive

� Keywords are in lowercase

� and, or, not are keywords

� Illegal to nest module
definitions

� // for comments

18

Modules are circuit components

� Module has ports
� External connections
� A,B,C,X,Y in example

� Port types
� input
� output
� inout (tristate)

� Use assign statements for
Boolean expressions
� and ⇔ &
� or ⇔ |
� not ⇔ ~

// previous example as a
// Boolean expression
module simple2 (X,Y,A,B,C);

input A,B,C;
output X,Y;
assign X = (A&B)|~C;
assign Y = ~C;

endmodule

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

19

bbar

t2

t1
abar

b
invb a

and2

a

inva b
and1

or1 out

5

NOT

7

AND2

4

NOT

6

AND2

8

OR2

Structural Verilog

module xor_gate (out,a,b);
input a,b;
output out;
wire abar, bbar, t1, t2;
not inva (abar,a);
not invb (bbar,b);
and and1 (t1,abar,b);
and and2 (t2,bbar,a);
or or1 (out,t1,t2);

endmodule
8 basic gates (keywords):

and, or, nand, nor

buf, not, xor, xnor

20

Behavioral Verilog

� Describe circuit behavior
� Not implementation

A
B

Cin
Cout

Sum
Adder

module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;

endmodule

{Cout, Sum} is a concatenation

21

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);
input [3:0] A;
input [3:0] B;
output [3:0] SUM;
output OVER;
assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];

endmodule

“[3:0] A” is a 4-wire bus labeled “A”

Bit 3 is the MSB

Bit 0 is the LSB

Can also write “[0:3] A”

Bit 0 is the MSB

Bit 3 is the LSB

Buses are implicitly connected—

If you write BUS[3:2], BUS[1:0],

they become part of BUS[3:0]

22

Continuous assignment

� Assignment is continuously evaluated
� Corresponds to a logic gate
� Assignments execute in parallel

assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 16'h00ff;

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

gate delay (used by simulator)

Boolean operators
(~ for bit-wise negation)

bits can assume four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

23

Invalid sequential assigns

assign A = X | (Y & ~Z);

assign B = W | A;

assign A = Y & Z;

“Reusing” a variable on the left
side of several assign statements
is not allowed

assign A = X | (Y & ~Z);

assign B = W | A;

assign X = B & Z;

Cyclic dependencies also are bad

A depends on X
which depends on B
which depends on A

24

Example: 4-bit comparator

module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);

endmodule

� Starting with 1-bit comparator
� Top-down design and bottom-up design are both okay

� Module ordering doesn’t matter because modules execute
in parallel

25

4-bit comparator

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;

Compare1 cp0(e0, Al0, Bl0, A4[0], B4[0]);
Compare1 cp1(e1, Al1, Bl1, A4[1], B4[1]);
Compare1 cp2(e2, Al2, Bl2, A4[2], B4[2]);
Compare1 cp3(e3, Al3, Bl3, A4[3], B4[3]);

assign Equal = (e0 & e1 & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |

(Al1 & e3 & e2) |
(Al0 & e3 & e2 & e1));

assign Blarger = (~Alarger & ~Equal);
endmodule

26

Functions

� Use functions for complex combinational
logic

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = myfunction(in1, in2);

function myfunction;
input in1, in2;
begin

myfunction = in1 & in2;
end

endfunction
endmodule

Benefit:

Functions force a result

⇒ Compiler will fail if function

does not generate a result

27

Always code blocks

reg A, B, C;

always @ (W or X or Y or Z)
begin

A = X | (Y & ~Z);
B = W | A;
A = Y & Z;
if (A & B) begin

B = Z;
C = W | Y;

end
end

Sensitivity list:
block is executed
each time one of
them changes value

Variables that appear
on the left hand side in
an always block must
be declared as “reg”s

Statements in an always
block are executed in
sequence

BAD: All variables must be
assigned on every control path!!!

28

Assignments

� Blocking assignments (Q = A)
� Variable is assigned immediately

� New value is used by subsequent statements

� Non-blocking assignments (Q <= A)
� Variable is assigned after all scheduled

statements are executed
� Value to be assigned is computed but saved for later

parallel assignment

� Usual use: Register assignment
� Registers simultaneously take new values after the

clock edge

29

Blocking vs. non-blocking

� Example: Swap

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

30

Verilog tips

� Do not write C-code
� Think hardware, not algorithms

� Verilog is inherently parallel
� Compilers don’t map algorithms to circuits

well

� Do describe hardware circuits
� First draw a dataflow diagram
� Then start coding

