[Lecture V4]

= Verilog
o Structural constructs
o Describing combinational circuits

= Additional references

o Tutorial and reference manual are found in
ActiveHDL help

o “Starter’'s Guide to Verilog 2001” by Michael
Ciletti copies for borrowing in hardware lab

[Combinational design]

= Step 1: Understand the problem
o ldentify the inputs and outputs
o Draw a truth table
= Step 2: Simplify the logic
o Draw a K-map
o Write a simplified Boolean expression
= SOP or POS
= Use don't cares
= Step 3: Implement the design
o Logic gates and/or
o Verilog

[Ways of specifying circuits]

» Schematics
o Structural description
o Describe circuit as interconnected elements
= Build complex circuits using hierarchy
O Large circuits are unreadable
» Hardware description languages (HDLS)
o Not programming languages
= Parallel languages tailored to digital design
o Synthesize code to produce a circuit

[Verilog versus VHDL]

= Both “IEEE standard” languages
= Most tools support both
= Verilog is “simpler”
o Less syntax, fewer constructs
= VHDL is more structured

o Can be better for large, complex systems
o Better modularization

Simulation and synthesis

= Simulation
o Models what a circuit does
= Multiply is “*”, ignoring implementation options
o Allows you to test design options
o “Execute” a design to verify correctness

= Synthesis

o Converts your code to a "netlist"
= Can simulate synthesized design

o Tools map your netlist to hardware

Simulation and synthesis

Gate or

HDL i
oL Transistor
Description Description
P —

Simulation Simulation E Physical J

mplementatio
—

.
Functional F”.l’.‘ﬁ;’éa'/ Real
Validation Validation Chip!

= Simulation and synthesis in the CSE curriculum
o CSE370: Learn simulation
o CSE467: Learn synthesis

J

Simulation

= You provide an environment
o Using non-circuit constructs
= Active-HDL waveforms, read files, print
o Using Verilog simulation code
= A “test fixture”

Specifying circuits in Verilog

Simulation

Test Fixture

(Specification)

Circuit Description
(Synthesizable)

= Three major styles I A .
. 1
o Instances and wires B 10
o Continuous assignments i
[
o “always” blocks 2..92
“Structural” “Behavioral”
wire E; wire E; reg E, X, Y;
and g1(E,A,B); assign E=A &B; always @ (A or B or C)
not g2(Y,C); assign Y = ~C; begin
or g3(X,E,Y); assign X =E|Y; E=A&B;
Y =~C;
X=E|Y;
end

[Data types]

= Values on a wire
o 0, 1, x (unknown or conflict), z (tristate or
unconnected)
= Vectors
o A[3:0] vector of 4 bits: A[3], A[2], A[1], A[O]
= Unsigned integer value
= Indices must be constants

[Manipulating vectors]

= Concatenating bits/vectors, use { }

o e.g.sign extend
= B[7:0] ={A[3], A[3], A[3], A[3], A[3:0]};
= B[7:0] = {4{A[3]}, A[3:0]};

= Style: Use a[7:0] = b[7:0] + c[7:0]
Not a=b+c;

10

[Data types that do NOT exist]

= Structures
Pointers
Objects
Recursive types

Verilog is not C or Java or Lisp or ...!

11

[Numbers]

m Format: <sign><size><base><number>
= 14

o Decimal number
= —4'bl11

o 4-bit 2’'s complement binary of 0011 (is 1101)
= 12’b0000_0100 0110

o 12 bit binary number (_is ignored)

= 12’h046
o 3-digit (12-bit) hexadecimal number

12

Numbers are unsigned

= C[4:0] = A[3:0] + B[3:0];
o if A=0110 (6) and B = 1010(-6),
then C = 10000 (not 00000)
o B is zero-padded, not sign-extended

13

Operators

Verilo i -
Opsinior s Functionel Gravp > greater than Relational
>= greater than or equal to Relational
ieselect slect < fess than Relational
0 bit-select or part-select p less than or equal fo Relational
O - logical equality Equality
) = logical inequality Equality
& — case equality Equality
| I== case inequality Equality
:f‘ & bit-wise AND Bit-wise
A
Aor bit-wise XOR Bit-wise
A~or -7 bit-wise XNOR Bit-wise
* | bit-wise OR Bit-wise
0 & logical AND Logical
oy replication Replication 1 logical OR Logical
. moliiply Avithmetic % conditional Conditional
/ divide Arithmetic
% modulus Arithmetic
binary plus Arithmetic))
binary minus Avithmetic Similar to Java operators
shift left shift
shift right shift

14

Two abstraction mechanisms

= Modules
o More structural, but also behavioral

o Heavily used in 370 and “real” Verilog
code

= Functions
o More behavioral

o Used to some extent in “real” Verilog, but
not much in 370

15

Basic building blocks: modules

/I first simple example
module simple (X,Y,A,B,C);
A GRS input A,B,C;

g1) output X,Y;
B @_ X wire E

and g1(E,A,B);
Y not g2(Y,C);
or g3(X,E,Y);
endmodule

16

Basic building blocks: modules

= Instanced into a design
o Never called
= Use wires for connections
= Modules execute in parallel
= Gate declarations (and, or,
etc)
o List outputs first
o Inputs second

Name can't begin with a
number

Names are case sensitive
Keywords are in lowercase
and, or, not are keywords

lllegal to nest module
definitions

/I for comments

17

Modules are circuit components

= Module has ports

o External connections B

o AB,C,X,Y in example

= Porttypes c E){T>C
2

Structural Verilog

module xor_gate (out,a,b);
input a,b;
output out;
wire abar, bbar, t1, t2;

N AND2
abar

not inva (abar,a);
not invb (bbar,b); b
and and1 (t1,abar,b);
and and2 (t2,bbar,a);
or orl (out,t1,t2);
endmodule

AND2

- invb a 7 2

8 basic gates (keywords):
and, or, nand, nor
buf, not, xor, xnor

19

out

Y
o input 2.9
o output .
o inout (tristate) Z FB”EVI'OUS exampl(_a asa
) oolean expression
= Use assign statements for ; .
Boolean expressions quule S'mple_z (X.Y.AB.C);
input A,B,C;
o and - & output X,Y;
o ore| assign X = (A&B)|~C;
o note ~ assign Y = ~C;
endmodule
18
Behavioral Verilog
= Describe circuit behavior ,
. . —— Sum
o Not implementation B——{ Adder Cout
Cin—
module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} =A + B + Cin;
endmodule
{Cout, Sum} is a concatenation
20

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B); Buses are implicitly connected—
input [3:0] A; If you write BUS[3:2], BUS[1:0],
input [3:0] B; K
output [3:0] SUM: they become part of BUS[3:0]

output OVER,;
assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule
“[3:0] A” is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit 0 is the LSB

Can also write “[0:3] A”
Bit 0 is the MSB

Bit 3 is the LSB
21

Continuous assignment

= Assignment is continuously evaluated
o Corresponds to a logic gate

o Assignments execute in parallel
Boolean operators

/ (~ for bit-wise negation)
assign A=X|(Y &~2);

bits can assume four values
assign_ B[3:0] = 4b01XX; — (0,1,%2)

variables can be n-bits wide
(MSB:LSB)

assign _ #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

assign _ C[15:0] = 16'h0O0ff;

gate delay (used by simulator) 22

Invalid sequential assigns

assign = A=X|(Y &~2);

; - . “Reusing” a variable on the left
assign B=W[A; side of several assign statements

_ is not allowed
assign A=Y &Z

assign A=X|[(Y &~2); Cyclic dependencies also are bad
assign B=W|A; A depends on X
assign_ ! which gepends on B
assign X=B&Z; which depends on A

23

Example: 4-bit comparator

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);
endmodule

= Starting with 1-bit comparator
o Top-down design and bottom-up design are both okay

o Module ordering doesn’t matter because modules execute
in parallel

24

4-bit comparator

/I Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire €0, el, e2, e3, Al0, All, Al2, AI3, B10, BI1, BI2, BI3;

Comparel cp0(e0, AlO, BIO, A4[0], B4[0]);
Comparel cpl(el, All, BI1, A4[1], B4[1]);
Comparel cp2(e2, Al2, BI2, A4[2], B4[2]);
Comparel cp3(e3, Al3, BI3, A4[3], B4[3]);

assign Equal = (e0 & el & e2 & e3);
assign Alarger = (AI3 | (Al2 & e3) |
(All & e3 & e2) |
(A0 & €3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule

25

Functions

= Use functions for complex combinational
logic
module and_gate (out, inl, in2);

input inl, in2;
output out;

assign out = myfunction(inl, in2);

function myfunction; Benefit:

inputinl, in2; Functions force a result

begin
?nyfunction =inl &in2: = Compiler will fail if function
end does not generate a result
endfunction
endmodule 26

Always code blocks

Variables that appear.
on the left hand side in

an always block must
/ be declared as “reg”s
Sensitivity list:

reg A B, C;

9 blochkti.s execute?

each time one o

always @ (W or X or Y or Z) — them changes value
begin

A=X| (Y &~2);

B=W|A; Statements in an always

A=Y &Z block are executed in

if (A & B) begin sequence

C= W |Y;

end
end BAD: All variables must be

assigned on every control path!!!

27

Assignments

= Blocking assignments (Q = A)

o Variable is assigned immediately
= New value is used by subsequent statements

= Non-blocking assignments (Q <= A)
o Variable is assigned after all scheduled
statements are executed

= Value to be assigned is computed but saved for later
parallel assignment

o Usual use: Register assignment

= Registers simultaneously take new values after the
clock edge

28

[Blocking vS. non-blocking

= Example: Swap

always @(posedge CLK) always @(posedge CLK)

begin begin
temp = B; A <=B;
B=A; B<=A;
A =temp; end

end

|

29

[Verilog tips

= Do not write C-code

o Think hardware, not algorithms
= Verilog is inherently parallel

= Compilers don’'t map algorithms to circuits
well

= Do describe hardware circuits
o First draw a dataflow diagram
o Then start coding

30

