Lecture 5

- Converting to use NAND and NOR
- Minimizing functions using Boolean cubes

Minimal set

- Can implement any logic function from NOT, NOR, and NAND
- In fact, can do it with only NORs and NANDs
 - NOT is just NAND or NOR with two identical inputs

 \[
 \begin{array}{ccc}
 X & Y & X \text{ nor } Y \\
 0 & 0 & 1 \\
 1 & 1 & 0 \\
 \end{array}
 \begin{array}{ccc}
 X & Y & X \text{ nand } Y \\
 0 & 0 & 1 \\
 1 & 1 & 0 \\
 \end{array}
 \]

Why NAND/NOR?

- NAND/NOR preferred for real hardware implementation
 - More efficient (less switches per gate)
- But how do we convert from the canonical forms that are expressed in AND/OR?

NAND/NOR truth tables

\[
\begin{array}{cccc}
(X + Y)' &=& X' \cdot Y' & (X + Y)' \cdot X' \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
(X \cdot Y)' &=& X' + Y' & (X \cdot Y)' + X' \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\end{array}
\]

Pushing the bubble

- Apply DeMorgan's
 \[
 A'B' = (A + B)' \quad A' + B' = (AB)' \\
 A + B = (A'B')' \quad (AB) = (A' + B')'
 \]

Converting to NAND/NOR

- Introduce inversions ("bubbles")
 - Introduce bubbles in pairs
 - Conserve inversions
 - Do not alter logic function
Z = AB + CD
= (A'+B')'+(C'+D')'
= ((A+B)+(C+D))'

ALGEBRAIC SIMPLIFICATION
- Not a systematic procedure
- Hard to know when we reached the minimum

COMPUTER-AIDED DESIGN TOOLS
- Require very long computation times (NP hard)
- Heuristic methods employed—“educated guesses”

Goal: Logic minimization

Visualization methods are useful
- Our brain is good at figuring "simple" things out
- Many real-world problems are solvable by hand

Goal: Logic minimization
Key tool: Uniting Theorem

- Uniting theorem: \(A(B'+B) = A \)
- The approach:
 - Find where some variables don’t change (the A’s above) and others do (the B’s above)
 - Eliminate the changing variables (the B’s)

\[
\begin{array}{ccc}
A & B & F \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]

A has the same value in both "on-set" rows
\(\Rightarrow \) keep A

B has a different value in both rows
\(\Rightarrow \) eliminate B

\[
F = A'B' + A'B = A'(B+B') = A'
\]

Boolean cubes

- Visualization tool for the unifying theorem
 - n input variables = n-dimensional "cube"

Example: Full adder carry-out

Binary full-adder carry-out logic
- On-set is covered by the OR of three 1-D subcubes

\[
\begin{array}{cccc}
A & B & C_{in} & C_{out} \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
C_{out} = BC_{in} + A
\]

Example

Changed one bit from the previous function
- On-set is covered by the OR of one 2-D subcube and one 3-D subcube

\[
\begin{array}{cccc}
A & B & C_{in} & D \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
D = BC_{in} + A
\]

M-D cubes in N-D space

- In a 3-cube (three variables):
 - A 0-cube (a single node) yields a term in 3 literals
 - A 1-cube (a line of two nodes) yields a term in 2 literals
 - A 2-cube (a plane of four nodes) yields a term in 1 literal
 - A 3-cube (a cube of eight nodes) yields a constant term "1"

\[
F(A,B,C) = \Sigma m(4,5,6,7)
\]

On-set forms a square (a 2-D cube)
A is asserted (true) and unchanging
B and C vary

This sub-cube represents the literal A

Mapping to Boolean cubes

- ON set = solid nodes
- OFF set = empty nodes

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Look for on-set adjacent to each other

Sub-cube (a line) comprises two nodes
A varies within the sub-cube; B does not
This sub-cube represents B'